| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elxp8 | Structured version Visualization version GIF version | ||
| Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp7 8021. (Contributed by ML, 19-Oct-2020.) |
| Ref | Expression |
|---|---|
| elxp8 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ((1st ‘𝐴) ∈ 𝐵 ∧ 𝐴 ∈ (V × 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xp1st 8018 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ 𝐵) | |
| 2 | ssv 3983 | . . . . 5 ⊢ 𝐵 ⊆ V | |
| 3 | ssid 3981 | . . . . 5 ⊢ 𝐶 ⊆ 𝐶 | |
| 4 | xpss12 5669 | . . . . 5 ⊢ ((𝐵 ⊆ V ∧ 𝐶 ⊆ 𝐶) → (𝐵 × 𝐶) ⊆ (V × 𝐶)) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . 4 ⊢ (𝐵 × 𝐶) ⊆ (V × 𝐶) |
| 6 | 5 | sseli 3954 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ (V × 𝐶)) |
| 7 | 1, 6 | jca 511 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ((1st ‘𝐴) ∈ 𝐵 ∧ 𝐴 ∈ (V × 𝐶))) |
| 8 | xpss 5670 | . . . . 5 ⊢ (V × 𝐶) ⊆ (V × V) | |
| 9 | 8 | sseli 3954 | . . . 4 ⊢ (𝐴 ∈ (V × 𝐶) → 𝐴 ∈ (V × V)) |
| 10 | 9 | adantl 481 | . . 3 ⊢ (((1st ‘𝐴) ∈ 𝐵 ∧ 𝐴 ∈ (V × 𝐶)) → 𝐴 ∈ (V × V)) |
| 11 | xp2nd 8019 | . . . 4 ⊢ (𝐴 ∈ (V × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) | |
| 12 | 11 | anim2i 617 | . . 3 ⊢ (((1st ‘𝐴) ∈ 𝐵 ∧ 𝐴 ∈ (V × 𝐶)) → ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) |
| 13 | elxp7 8021 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
| 14 | 10, 12, 13 | sylanbrc 583 | . 2 ⊢ (((1st ‘𝐴) ∈ 𝐵 ∧ 𝐴 ∈ (V × 𝐶)) → 𝐴 ∈ (𝐵 × 𝐶)) |
| 15 | 7, 14 | impbii 209 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ((1st ‘𝐴) ∈ 𝐵 ∧ 𝐴 ∈ (V × 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 × cxp 5652 ‘cfv 6530 1st c1st 7984 2nd c2nd 7985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fv 6538 df-1st 7986 df-2nd 7987 |
| This theorem is referenced by: finxpsuclem 37361 |
| Copyright terms: Public domain | W3C validator |