Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elxp8 | Structured version Visualization version GIF version |
Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp7 7749. (Contributed by ML, 19-Oct-2020.) |
Ref | Expression |
---|---|
elxp8 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ((1st ‘𝐴) ∈ 𝐵 ∧ 𝐴 ∈ (V × 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xp1st 7746 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ 𝐵) | |
2 | ssv 3901 | . . . . 5 ⊢ 𝐵 ⊆ V | |
3 | ssid 3899 | . . . . 5 ⊢ 𝐶 ⊆ 𝐶 | |
4 | xpss12 5540 | . . . . 5 ⊢ ((𝐵 ⊆ V ∧ 𝐶 ⊆ 𝐶) → (𝐵 × 𝐶) ⊆ (V × 𝐶)) | |
5 | 2, 3, 4 | mp2an 692 | . . . 4 ⊢ (𝐵 × 𝐶) ⊆ (V × 𝐶) |
6 | 5 | sseli 3873 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ (V × 𝐶)) |
7 | 1, 6 | jca 515 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ((1st ‘𝐴) ∈ 𝐵 ∧ 𝐴 ∈ (V × 𝐶))) |
8 | xpss 5541 | . . . . 5 ⊢ (V × 𝐶) ⊆ (V × V) | |
9 | 8 | sseli 3873 | . . . 4 ⊢ (𝐴 ∈ (V × 𝐶) → 𝐴 ∈ (V × V)) |
10 | 9 | adantl 485 | . . 3 ⊢ (((1st ‘𝐴) ∈ 𝐵 ∧ 𝐴 ∈ (V × 𝐶)) → 𝐴 ∈ (V × V)) |
11 | xp2nd 7747 | . . . 4 ⊢ (𝐴 ∈ (V × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) | |
12 | 11 | anim2i 620 | . . 3 ⊢ (((1st ‘𝐴) ∈ 𝐵 ∧ 𝐴 ∈ (V × 𝐶)) → ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) |
13 | elxp7 7749 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
14 | 10, 12, 13 | sylanbrc 586 | . 2 ⊢ (((1st ‘𝐴) ∈ 𝐵 ∧ 𝐴 ∈ (V × 𝐶)) → 𝐴 ∈ (𝐵 × 𝐶)) |
15 | 7, 14 | impbii 212 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ((1st ‘𝐴) ∈ 𝐵 ∧ 𝐴 ∈ (V × 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∈ wcel 2114 Vcvv 3398 ⊆ wss 3843 × cxp 5523 ‘cfv 6339 1st c1st 7712 2nd c2nd 7713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-iota 6297 df-fun 6341 df-fv 6347 df-1st 7714 df-2nd 7715 |
This theorem is referenced by: finxpsuclem 35211 |
Copyright terms: Public domain | W3C validator |