Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elxp8 Structured version   Visualization version   GIF version

Theorem elxp8 37415
Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp7 7956. (Contributed by ML, 19-Oct-2020.)
Assertion
Ref Expression
elxp8 (𝐴 ∈ (𝐵 × 𝐶) ↔ ((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)))

Proof of Theorem elxp8
StepHypRef Expression
1 xp1st 7953 . . 3 (𝐴 ∈ (𝐵 × 𝐶) → (1st𝐴) ∈ 𝐵)
2 ssv 3954 . . . . 5 𝐵 ⊆ V
3 ssid 3952 . . . . 5 𝐶𝐶
4 xpss12 5629 . . . . 5 ((𝐵 ⊆ V ∧ 𝐶𝐶) → (𝐵 × 𝐶) ⊆ (V × 𝐶))
52, 3, 4mp2an 692 . . . 4 (𝐵 × 𝐶) ⊆ (V × 𝐶)
65sseli 3925 . . 3 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ (V × 𝐶))
71, 6jca 511 . 2 (𝐴 ∈ (𝐵 × 𝐶) → ((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)))
8 xpss 5630 . . . . 5 (V × 𝐶) ⊆ (V × V)
98sseli 3925 . . . 4 (𝐴 ∈ (V × 𝐶) → 𝐴 ∈ (V × V))
109adantl 481 . . 3 (((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)) → 𝐴 ∈ (V × V))
11 xp2nd 7954 . . . 4 (𝐴 ∈ (V × 𝐶) → (2nd𝐴) ∈ 𝐶)
1211anim2i 617 . . 3 (((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)) → ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))
13 elxp7 7956 . . 3 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
1410, 12, 13sylanbrc 583 . 2 (((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)) → 𝐴 ∈ (𝐵 × 𝐶))
157, 14impbii 209 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ ((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  Vcvv 3436  wss 3897   × cxp 5612  cfv 6481  1st c1st 7919  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fv 6489  df-1st 7921  df-2nd 7922
This theorem is referenced by:  finxpsuclem  37441
  Copyright terms: Public domain W3C validator