Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elxp8 Structured version   Visualization version   GIF version

Theorem elxp8 37335
Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp7 8021. (Contributed by ML, 19-Oct-2020.)
Assertion
Ref Expression
elxp8 (𝐴 ∈ (𝐵 × 𝐶) ↔ ((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)))

Proof of Theorem elxp8
StepHypRef Expression
1 xp1st 8018 . . 3 (𝐴 ∈ (𝐵 × 𝐶) → (1st𝐴) ∈ 𝐵)
2 ssv 3983 . . . . 5 𝐵 ⊆ V
3 ssid 3981 . . . . 5 𝐶𝐶
4 xpss12 5669 . . . . 5 ((𝐵 ⊆ V ∧ 𝐶𝐶) → (𝐵 × 𝐶) ⊆ (V × 𝐶))
52, 3, 4mp2an 692 . . . 4 (𝐵 × 𝐶) ⊆ (V × 𝐶)
65sseli 3954 . . 3 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ (V × 𝐶))
71, 6jca 511 . 2 (𝐴 ∈ (𝐵 × 𝐶) → ((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)))
8 xpss 5670 . . . . 5 (V × 𝐶) ⊆ (V × V)
98sseli 3954 . . . 4 (𝐴 ∈ (V × 𝐶) → 𝐴 ∈ (V × V))
109adantl 481 . . 3 (((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)) → 𝐴 ∈ (V × V))
11 xp2nd 8019 . . . 4 (𝐴 ∈ (V × 𝐶) → (2nd𝐴) ∈ 𝐶)
1211anim2i 617 . . 3 (((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)) → ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))
13 elxp7 8021 . . 3 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
1410, 12, 13sylanbrc 583 . 2 (((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)) → 𝐴 ∈ (𝐵 × 𝐶))
157, 14impbii 209 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ ((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  Vcvv 3459  wss 3926   × cxp 5652  cfv 6530  1st c1st 7984  2nd c2nd 7985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6483  df-fun 6532  df-fv 6538  df-1st 7986  df-2nd 7987
This theorem is referenced by:  finxpsuclem  37361
  Copyright terms: Public domain W3C validator