Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elxp8 Structured version   Visualization version   GIF version

Theorem elxp8 37337
Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp7 8065. (Contributed by ML, 19-Oct-2020.)
Assertion
Ref Expression
elxp8 (𝐴 ∈ (𝐵 × 𝐶) ↔ ((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)))

Proof of Theorem elxp8
StepHypRef Expression
1 xp1st 8062 . . 3 (𝐴 ∈ (𝐵 × 𝐶) → (1st𝐴) ∈ 𝐵)
2 ssv 4033 . . . . 5 𝐵 ⊆ V
3 ssid 4031 . . . . 5 𝐶𝐶
4 xpss12 5715 . . . . 5 ((𝐵 ⊆ V ∧ 𝐶𝐶) → (𝐵 × 𝐶) ⊆ (V × 𝐶))
52, 3, 4mp2an 691 . . . 4 (𝐵 × 𝐶) ⊆ (V × 𝐶)
65sseli 4004 . . 3 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ (V × 𝐶))
71, 6jca 511 . 2 (𝐴 ∈ (𝐵 × 𝐶) → ((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)))
8 xpss 5716 . . . . 5 (V × 𝐶) ⊆ (V × V)
98sseli 4004 . . . 4 (𝐴 ∈ (V × 𝐶) → 𝐴 ∈ (V × V))
109adantl 481 . . 3 (((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)) → 𝐴 ∈ (V × V))
11 xp2nd 8063 . . . 4 (𝐴 ∈ (V × 𝐶) → (2nd𝐴) ∈ 𝐶)
1211anim2i 616 . . 3 (((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)) → ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))
13 elxp7 8065 . . 3 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
1410, 12, 13sylanbrc 582 . 2 (((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)) → 𝐴 ∈ (𝐵 × 𝐶))
157, 14impbii 209 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ ((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  Vcvv 3488  wss 3976   × cxp 5698  cfv 6573  1st c1st 8028  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-1st 8030  df-2nd 8031
This theorem is referenced by:  finxpsuclem  37363
  Copyright terms: Public domain W3C validator