Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elxp8 Structured version   Visualization version   GIF version

Theorem elxp8 34788
Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp7 7706. (Contributed by ML, 19-Oct-2020.)
Assertion
Ref Expression
elxp8 (𝐴 ∈ (𝐵 × 𝐶) ↔ ((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)))

Proof of Theorem elxp8
StepHypRef Expression
1 xp1st 7703 . . 3 (𝐴 ∈ (𝐵 × 𝐶) → (1st𝐴) ∈ 𝐵)
2 ssv 3939 . . . . 5 𝐵 ⊆ V
3 ssid 3937 . . . . 5 𝐶𝐶
4 xpss12 5534 . . . . 5 ((𝐵 ⊆ V ∧ 𝐶𝐶) → (𝐵 × 𝐶) ⊆ (V × 𝐶))
52, 3, 4mp2an 691 . . . 4 (𝐵 × 𝐶) ⊆ (V × 𝐶)
65sseli 3911 . . 3 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ (V × 𝐶))
71, 6jca 515 . 2 (𝐴 ∈ (𝐵 × 𝐶) → ((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)))
8 xpss 5535 . . . . 5 (V × 𝐶) ⊆ (V × V)
98sseli 3911 . . . 4 (𝐴 ∈ (V × 𝐶) → 𝐴 ∈ (V × V))
109adantl 485 . . 3 (((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)) → 𝐴 ∈ (V × V))
11 xp2nd 7704 . . . 4 (𝐴 ∈ (V × 𝐶) → (2nd𝐴) ∈ 𝐶)
1211anim2i 619 . . 3 (((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)) → ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))
13 elxp7 7706 . . 3 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
1410, 12, 13sylanbrc 586 . 2 (((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)) → 𝐴 ∈ (𝐵 × 𝐶))
157, 14impbii 212 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ ((1st𝐴) ∈ 𝐵𝐴 ∈ (V × 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wcel 2111  Vcvv 3441  wss 3881   × cxp 5517  cfv 6324  1st c1st 7669  2nd c2nd 7670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fv 6332  df-1st 7671  df-2nd 7672
This theorem is referenced by:  finxpsuclem  34814
  Copyright terms: Public domain W3C validator