![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elxp8 | Structured version Visualization version GIF version |
Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp7 8012. (Contributed by ML, 19-Oct-2020.) |
Ref | Expression |
---|---|
elxp8 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ((1st ‘𝐴) ∈ 𝐵 ∧ 𝐴 ∈ (V × 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xp1st 8009 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ 𝐵) | |
2 | ssv 4005 | . . . . 5 ⊢ 𝐵 ⊆ V | |
3 | ssid 4003 | . . . . 5 ⊢ 𝐶 ⊆ 𝐶 | |
4 | xpss12 5690 | . . . . 5 ⊢ ((𝐵 ⊆ V ∧ 𝐶 ⊆ 𝐶) → (𝐵 × 𝐶) ⊆ (V × 𝐶)) | |
5 | 2, 3, 4 | mp2an 688 | . . . 4 ⊢ (𝐵 × 𝐶) ⊆ (V × 𝐶) |
6 | 5 | sseli 3977 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ (V × 𝐶)) |
7 | 1, 6 | jca 510 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ((1st ‘𝐴) ∈ 𝐵 ∧ 𝐴 ∈ (V × 𝐶))) |
8 | xpss 5691 | . . . . 5 ⊢ (V × 𝐶) ⊆ (V × V) | |
9 | 8 | sseli 3977 | . . . 4 ⊢ (𝐴 ∈ (V × 𝐶) → 𝐴 ∈ (V × V)) |
10 | 9 | adantl 480 | . . 3 ⊢ (((1st ‘𝐴) ∈ 𝐵 ∧ 𝐴 ∈ (V × 𝐶)) → 𝐴 ∈ (V × V)) |
11 | xp2nd 8010 | . . . 4 ⊢ (𝐴 ∈ (V × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) | |
12 | 11 | anim2i 615 | . . 3 ⊢ (((1st ‘𝐴) ∈ 𝐵 ∧ 𝐴 ∈ (V × 𝐶)) → ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) |
13 | elxp7 8012 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
14 | 10, 12, 13 | sylanbrc 581 | . 2 ⊢ (((1st ‘𝐴) ∈ 𝐵 ∧ 𝐴 ∈ (V × 𝐶)) → 𝐴 ∈ (𝐵 × 𝐶)) |
15 | 7, 14 | impbii 208 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ((1st ‘𝐴) ∈ 𝐵 ∧ 𝐴 ∈ (V × 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∈ wcel 2104 Vcvv 3472 ⊆ wss 3947 × cxp 5673 ‘cfv 6542 1st c1st 7975 2nd c2nd 7976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6494 df-fun 6544 df-fv 6550 df-1st 7977 df-2nd 7978 |
This theorem is referenced by: finxpsuclem 36581 |
Copyright terms: Public domain | W3C validator |