Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opeq1 | ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
2 | 1 | anbi1d 629 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝐴 ∈ V ∧ 𝐶 ∈ V) ↔ (𝐵 ∈ V ∧ 𝐶 ∈ V))) |
3 | sneq 4568 | . . . 4 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
4 | preq1 4666 | . . . 4 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
5 | 3, 4 | preq12d 4674 | . . 3 ⊢ (𝐴 = 𝐵 → {{𝐴}, {𝐴, 𝐶}} = {{𝐵}, {𝐵, 𝐶}}) |
6 | 2, 5 | ifbieq1d 4480 | . 2 ⊢ (𝐴 = 𝐵 → if((𝐴 ∈ V ∧ 𝐶 ∈ V), {{𝐴}, {𝐴, 𝐶}}, ∅) = if((𝐵 ∈ V ∧ 𝐶 ∈ V), {{𝐵}, {𝐵, 𝐶}}, ∅)) |
7 | dfopif 4797 | . 2 ⊢ 〈𝐴, 𝐶〉 = if((𝐴 ∈ V ∧ 𝐶 ∈ V), {{𝐴}, {𝐴, 𝐶}}, ∅) | |
8 | dfopif 4797 | . 2 ⊢ 〈𝐵, 𝐶〉 = if((𝐵 ∈ V ∧ 𝐶 ∈ V), {{𝐵}, {𝐵, 𝐶}}, ∅) | |
9 | 6, 7, 8 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ifcif 4456 {csn 4558 {cpr 4560 〈cop 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 |
This theorem is referenced by: opeq12 4803 opeq1i 4804 opeq1d 4807 oteq1 4810 breq1 5073 cbvopab1 5145 cbvopab1g 5146 cbvopab1s 5148 cbvopab1v 5149 opthg 5386 eqvinop 5395 sbcop1 5396 opelopabsb 5436 opelxp 5616 elvvv 5653 opabid2 5727 opeliunxp2 5736 elsnres 5920 elimasngOLD 5987 dmsnopg 6105 reuop 6185 funopg 6452 f1osng 6740 f1oprswap 6743 dmfco 6846 fvelrn 6936 fsng 6991 funsneqopb 7006 fprg 7009 fvrnressn 7015 funfvima3 7094 oveq1 7262 oprabidw 7286 oprabid 7287 dfoprab2 7311 cbvoprab1 7340 elxp4 7743 elxp5 7744 opabex3d 7781 opabex3rd 7782 opabex3 7783 op1stg 7816 op2ndg 7817 el2xptp 7850 dfoprab4f 7869 frxp 7938 opeliunxp2f 7997 tfrlem11 8190 omeu 8378 oeeui 8395 elixpsn 8683 fundmen 8775 xpsnen 8796 xpassen 8806 xpf1o 8875 unxpdomlem1 8956 djur 9608 dfac5lem1 9810 dfac5lem4 9813 axdc4lem 10142 nqereu 10616 mulcanenq 10647 archnq 10667 prlem934 10720 supsrlem 10798 supsr 10799 swrdccatin1 14366 swrdccat3blem 14380 fsum2dlem 15410 fprod2dlem 15618 vdwlem10 16619 imasaddfnlem 17156 catideu 17301 iscatd2 17307 catlid 17309 catpropd 17335 symg2bas 18915 efgmval 19233 efgi 19240 vrgpval 19288 gsumcom2 19491 txkgen 22711 cnmpt21 22730 xkoinjcn 22746 txconn 22748 pt1hmeo 22865 cnextfvval 23124 qustgplem 23180 dvbsss 24971 axlowdim2 27231 axlowdim 27232 axcontlem10 27244 axcontlem12 27246 isnvlem 28873 br8d 30851 2ndresdju 30887 cnvoprabOLD 30957 gsumhashmul 31218 prsrn 31767 esum2dlem 31960 eulerpartlemgvv 32243 fineqvrep 32964 satf0op 33239 satffunlem1lem1 33264 satffunlem2lem1 33266 sategoelfvb 33281 elxpxp 33586 br8 33629 br6 33630 br4 33631 eldm3 33634 dfdm5 33653 frxp2 33718 xpord2pred 33719 frxp3 33724 xpord3pred 33725 elfuns 34144 brimg 34166 brapply 34167 brsuccf 34170 brrestrict 34178 dfrdg4 34180 cgrdegen 34233 brofs 34234 cgrextend 34237 brifs 34272 ifscgr 34273 brcgr3 34275 brcolinear2 34287 colineardim1 34290 brfs 34308 idinside 34313 btwnconn1lem7 34322 btwnconn1lem11 34326 btwnconn1lem12 34327 brsegle 34337 outsideofeu 34360 fvray 34370 linedegen 34372 fvline 34373 bj-inftyexpiinv 35306 bj-inftyexpidisj 35308 finxpeq2 35485 finxpreclem6 35494 finxpsuclem 35495 curfv 35684 isdivrngo 36035 drngoi 36036 dicelval3 39121 dihjatcclem4 39362 dropab1 41954 relopabVD 42410 funressndmafv2rn 44602 dfatdmfcoafv2 44633 ichnreuop 44812 ichreuopeq 44813 reuopreuprim 44866 isthincd2lem2 46205 |
Copyright terms: Public domain | W3C validator |