Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opeq1 | ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2827 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
2 | 1 | anbi1d 630 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝐴 ∈ V ∧ 𝐶 ∈ V) ↔ (𝐵 ∈ V ∧ 𝐶 ∈ V))) |
3 | sneq 4572 | . . . 4 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
4 | preq1 4670 | . . . 4 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
5 | 3, 4 | preq12d 4678 | . . 3 ⊢ (𝐴 = 𝐵 → {{𝐴}, {𝐴, 𝐶}} = {{𝐵}, {𝐵, 𝐶}}) |
6 | 2, 5 | ifbieq1d 4484 | . 2 ⊢ (𝐴 = 𝐵 → if((𝐴 ∈ V ∧ 𝐶 ∈ V), {{𝐴}, {𝐴, 𝐶}}, ∅) = if((𝐵 ∈ V ∧ 𝐶 ∈ V), {{𝐵}, {𝐵, 𝐶}}, ∅)) |
7 | dfopif 4801 | . 2 ⊢ 〈𝐴, 𝐶〉 = if((𝐴 ∈ V ∧ 𝐶 ∈ V), {{𝐴}, {𝐴, 𝐶}}, ∅) | |
8 | dfopif 4801 | . 2 ⊢ 〈𝐵, 𝐶〉 = if((𝐵 ∈ V ∧ 𝐶 ∈ V), {{𝐵}, {𝐵, 𝐶}}, ∅) | |
9 | 6, 7, 8 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 Vcvv 3433 ∅c0 4257 ifcif 4460 {csn 4562 {cpr 4564 〈cop 4568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 |
This theorem is referenced by: opeq12 4807 opeq1i 4808 opeq1d 4811 oteq1 4814 breq1 5078 cbvopab1 5150 cbvopab1g 5151 cbvopab1s 5153 cbvopab1v 5154 opthg 5393 eqvinop 5402 sbcop1 5403 opelopabsb 5444 opelxp 5626 elvvv 5663 opabid2 5740 opeliunxp2 5750 elsnres 5934 elimasngOLD 6001 dmsnopg 6121 reuop 6200 funopg 6475 f1osng 6766 f1oprswap 6769 dmfco 6873 fvelrn 6963 fsng 7018 funsneqopb 7033 fprg 7036 fvrnressn 7042 funfvima3 7121 oveq1 7291 oprabidw 7315 oprabid 7316 dfoprab2 7342 cbvoprab1 7371 elxp4 7778 elxp5 7779 opabex3d 7817 opabex3rd 7818 opabex3 7819 op1stg 7852 op2ndg 7853 el2xptp 7886 dfoprab4f 7905 frxp 7976 opeliunxp2f 8035 tfrlem11 8228 omeu 8425 oeeui 8442 elixpsn 8734 fundmen 8830 xpsnen 8851 xpassen 8862 xpf1o 8935 unxpdomlem1 9036 djur 9686 dfac5lem1 9888 dfac5lem4 9891 axdc4lem 10220 nqereu 10694 mulcanenq 10725 archnq 10745 prlem934 10798 supsrlem 10876 supsr 10877 swrdccatin1 14447 swrdccat3blem 14461 fsum2dlem 15491 fprod2dlem 15699 vdwlem10 16700 imasaddfnlem 17248 catideu 17393 iscatd2 17399 catlid 17401 catpropd 17427 symg2bas 19009 efgmval 19327 efgi 19334 vrgpval 19382 gsumcom2 19585 txkgen 22812 cnmpt21 22831 xkoinjcn 22847 txconn 22849 pt1hmeo 22966 cnextfvval 23225 qustgplem 23281 dvbsss 25075 axlowdim2 27337 axlowdim 27338 axcontlem10 27350 axcontlem12 27352 isnvlem 28981 br8d 30959 2ndresdju 30995 cnvoprabOLD 31064 gsumhashmul 31325 prsrn 31874 esum2dlem 32069 eulerpartlemgvv 32352 fineqvrep 33073 satf0op 33348 satffunlem1lem1 33373 satffunlem2lem1 33375 sategoelfvb 33390 elxpxp 33692 br8 33732 br6 33733 br4 33734 eldm3 33737 dfdm5 33756 frxp2 33800 xpord2pred 33801 frxp3 33806 xpord3pred 33807 elfuns 34226 brimg 34248 brapply 34249 brsuccf 34252 brrestrict 34260 dfrdg4 34262 cgrdegen 34315 brofs 34316 cgrextend 34319 brifs 34354 ifscgr 34355 brcgr3 34357 brcolinear2 34369 colineardim1 34372 brfs 34390 idinside 34395 btwnconn1lem7 34404 btwnconn1lem11 34408 btwnconn1lem12 34409 brsegle 34419 outsideofeu 34442 fvray 34452 linedegen 34454 fvline 34455 bj-inftyexpiinv 35388 bj-inftyexpidisj 35390 finxpeq2 35567 finxpreclem6 35576 finxpsuclem 35577 curfv 35766 isdivrngo 36117 drngoi 36118 dicelval3 39201 dihjatcclem4 39442 dropab1 42072 relopabVD 42528 funressndmafv2rn 44726 dfatdmfcoafv2 44757 ichnreuop 44935 ichreuopeq 44936 reuopreuprim 44989 isthincd2lem2 46328 |
Copyright terms: Public domain | W3C validator |