Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opeq1 | ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
2 | 1 | anbi1d 630 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝐴 ∈ V ∧ 𝐶 ∈ V) ↔ (𝐵 ∈ V ∧ 𝐶 ∈ V))) |
3 | sneq 4572 | . . . 4 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
4 | preq1 4670 | . . . 4 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
5 | 3, 4 | preq12d 4678 | . . 3 ⊢ (𝐴 = 𝐵 → {{𝐴}, {𝐴, 𝐶}} = {{𝐵}, {𝐵, 𝐶}}) |
6 | 2, 5 | ifbieq1d 4484 | . 2 ⊢ (𝐴 = 𝐵 → if((𝐴 ∈ V ∧ 𝐶 ∈ V), {{𝐴}, {𝐴, 𝐶}}, ∅) = if((𝐵 ∈ V ∧ 𝐶 ∈ V), {{𝐵}, {𝐵, 𝐶}}, ∅)) |
7 | dfopif 4801 | . 2 ⊢ 〈𝐴, 𝐶〉 = if((𝐴 ∈ V ∧ 𝐶 ∈ V), {{𝐴}, {𝐴, 𝐶}}, ∅) | |
8 | dfopif 4801 | . 2 ⊢ 〈𝐵, 𝐶〉 = if((𝐵 ∈ V ∧ 𝐶 ∈ V), {{𝐵}, {𝐵, 𝐶}}, ∅) | |
9 | 6, 7, 8 | 3eqtr4g 2803 | 1 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3430 ∅c0 4257 ifcif 4460 {csn 4562 {cpr 4564 〈cop 4568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 |
This theorem is referenced by: opeq12 4807 opeq1i 4808 opeq1d 4811 oteq1 4814 breq1 5077 cbvopab1 5149 cbvopab1g 5150 cbvopab1s 5152 cbvopab1v 5153 opthg 5391 eqvinop 5400 sbcop1 5401 opelopabsb 5441 opelxp 5621 elvvv 5658 opabid2 5732 opeliunxp2 5741 elsnres 5925 elimasngOLD 5992 dmsnopg 6110 reuop 6190 funopg 6461 f1osng 6750 f1oprswap 6753 dmfco 6857 fvelrn 6947 fsng 7002 funsneqopb 7017 fprg 7020 fvrnressn 7026 funfvima3 7105 oveq1 7275 oprabidw 7299 oprabid 7300 dfoprab2 7324 cbvoprab1 7353 elxp4 7760 elxp5 7761 opabex3d 7798 opabex3rd 7799 opabex3 7800 op1stg 7833 op2ndg 7834 el2xptp 7867 dfoprab4f 7886 frxp 7955 opeliunxp2f 8014 tfrlem11 8207 omeu 8404 oeeui 8421 elixpsn 8713 fundmen 8809 xpsnen 8830 xpassen 8841 xpf1o 8914 unxpdomlem1 9015 djur 9665 dfac5lem1 9867 dfac5lem4 9870 axdc4lem 10199 nqereu 10673 mulcanenq 10704 archnq 10724 prlem934 10777 supsrlem 10855 supsr 10856 swrdccatin1 14426 swrdccat3blem 14440 fsum2dlem 15470 fprod2dlem 15678 vdwlem10 16679 imasaddfnlem 17227 catideu 17372 iscatd2 17378 catlid 17380 catpropd 17406 symg2bas 18988 efgmval 19306 efgi 19313 vrgpval 19361 gsumcom2 19564 txkgen 22791 cnmpt21 22810 xkoinjcn 22826 txconn 22828 pt1hmeo 22945 cnextfvval 23204 qustgplem 23260 dvbsss 25054 axlowdim2 27316 axlowdim 27317 axcontlem10 27329 axcontlem12 27331 isnvlem 28958 br8d 30936 2ndresdju 30972 cnvoprabOLD 31041 gsumhashmul 31302 prsrn 31851 esum2dlem 32046 eulerpartlemgvv 32329 fineqvrep 33050 satf0op 33325 satffunlem1lem1 33350 satffunlem2lem1 33352 sategoelfvb 33367 elxpxp 33669 br8 33709 br6 33710 br4 33711 eldm3 33714 dfdm5 33733 frxp2 33777 xpord2pred 33778 frxp3 33783 xpord3pred 33784 elfuns 34203 brimg 34225 brapply 34226 brsuccf 34229 brrestrict 34237 dfrdg4 34239 cgrdegen 34292 brofs 34293 cgrextend 34296 brifs 34331 ifscgr 34332 brcgr3 34334 brcolinear2 34346 colineardim1 34349 brfs 34367 idinside 34372 btwnconn1lem7 34381 btwnconn1lem11 34385 btwnconn1lem12 34386 brsegle 34396 outsideofeu 34419 fvray 34429 linedegen 34431 fvline 34432 bj-inftyexpiinv 35365 bj-inftyexpidisj 35367 finxpeq2 35544 finxpreclem6 35553 finxpsuclem 35554 curfv 35743 isdivrngo 36094 drngoi 36095 dicelval3 39180 dihjatcclem4 39421 dropab1 42024 relopabVD 42480 funressndmafv2rn 44671 dfatdmfcoafv2 44702 ichnreuop 44880 ichreuopeq 44881 reuopreuprim 44934 isthincd2lem2 46273 |
Copyright terms: Public domain | W3C validator |