MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvopab1vOLD Structured version   Visualization version   GIF version

Theorem cbvopab1vOLD 5222
Description: Obsolete version of cbvopab1v 5221 as of 17-Nov-2024. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
cbvopab1vOLD.1 (𝑥 = 𝑧 → (𝜑𝜓))
Assertion
Ref Expression
cbvopab1vOLD {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦,𝑧)

Proof of Theorem cbvopab1vOLD
StepHypRef Expression
1 nfv 1910 . 2 𝑧𝜑
2 nfv 1910 . 2 𝑥𝜓
3 cbvopab1vOLD.1 . 2 (𝑥 = 𝑧 → (𝜑𝜓))
41, 2, 3cbvopab1 5217 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  {copab 5204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-opab 5205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator