MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvopab2v Structured version   Visualization version   GIF version

Theorem cbvopab2v 5155
Description: Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.)
Hypothesis
Ref Expression
cbvopab2v.1 (𝑦 = 𝑧 → (𝜑𝜓))
Assertion
Ref Expression
cbvopab2v {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑧⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑧   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑧)

Proof of Theorem cbvopab2v
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 opeq2 4805 . . . . . . 7 (𝑦 = 𝑧 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑧⟩)
21eqeq2d 2749 . . . . . 6 (𝑦 = 𝑧 → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ 𝑤 = ⟨𝑥, 𝑧⟩))
3 cbvopab2v.1 . . . . . 6 (𝑦 = 𝑧 → (𝜑𝜓))
42, 3anbi12d 631 . . . . 5 (𝑦 = 𝑧 → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓)))
54cbvexvw 2040 . . . 4 (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓))
65exbii 1850 . . 3 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓))
76abbii 2808 . 2 {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓)}
8 df-opab 5137 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
9 df-opab 5137 . 2 {⟨𝑥, 𝑧⟩ ∣ 𝜓} = {𝑤 ∣ ∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓)}
107, 8, 93eqtr4i 2776 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  {cab 2715  cop 4567  {copab 5136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-opab 5137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator