Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvopab2v | Structured version Visualization version GIF version |
Description: Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.) |
Ref | Expression |
---|---|
cbvopab2v.1 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvopab2v | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑧〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 4802 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → 〈𝑥, 𝑦〉 = 〈𝑥, 𝑧〉) | |
2 | 1 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑤 = 〈𝑥, 𝑦〉 ↔ 𝑤 = 〈𝑥, 𝑧〉)) |
3 | cbvopab2v.1 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | anbi12d 630 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜓))) |
5 | 4 | cbvexvw 2041 | . . . 4 ⊢ (∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜓)) |
6 | 5 | exbii 1851 | . . 3 ⊢ (∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜓)) |
7 | 6 | abbii 2809 | . 2 ⊢ {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑤 ∣ ∃𝑥∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜓)} |
8 | df-opab 5133 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
9 | df-opab 5133 | . 2 ⊢ {〈𝑥, 𝑧〉 ∣ 𝜓} = {𝑤 ∣ ∃𝑥∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜓)} | |
10 | 7, 8, 9 | 3eqtr4i 2776 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑧〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 {cab 2715 〈cop 4564 {copab 5132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |