MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvopab1 Structured version   Visualization version   GIF version

Theorem cbvopab1 5103
Description: Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2379. See cbvopab1g 5104 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024.)
Hypotheses
Ref Expression
cbvopab1.1 𝑧𝜑
cbvopab1.2 𝑥𝜓
cbvopab1.3 (𝑥 = 𝑧 → (𝜑𝜓))
Assertion
Ref Expression
cbvopab1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem cbvopab1
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . 5 𝑣𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
2 nfv 1915 . . . . . . 7 𝑥 𝑤 = ⟨𝑣, 𝑦
3 nfs1v 2157 . . . . . . 7 𝑥[𝑣 / 𝑥]𝜑
42, 3nfan 1900 . . . . . 6 𝑥(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)
54nfex 2332 . . . . 5 𝑥𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)
6 opeq1 4763 . . . . . . . 8 (𝑥 = 𝑣 → ⟨𝑥, 𝑦⟩ = ⟨𝑣, 𝑦⟩)
76eqeq2d 2809 . . . . . . 7 (𝑥 = 𝑣 → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ 𝑤 = ⟨𝑣, 𝑦⟩))
8 sbequ12 2250 . . . . . . 7 (𝑥 = 𝑣 → (𝜑 ↔ [𝑣 / 𝑥]𝜑))
97, 8anbi12d 633 . . . . . 6 (𝑥 = 𝑣 → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)))
109exbidv 1922 . . . . 5 (𝑥 = 𝑣 → (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)))
111, 5, 10cbvexv1 2351 . . . 4 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑣𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑))
12 nfv 1915 . . . . . . 7 𝑧 𝑤 = ⟨𝑣, 𝑦
13 cbvopab1.1 . . . . . . . 8 𝑧𝜑
1413nfsbv 2338 . . . . . . 7 𝑧[𝑣 / 𝑥]𝜑
1512, 14nfan 1900 . . . . . 6 𝑧(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)
1615nfex 2332 . . . . 5 𝑧𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)
17 nfv 1915 . . . . 5 𝑣𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)
18 opeq1 4763 . . . . . . . 8 (𝑣 = 𝑧 → ⟨𝑣, 𝑦⟩ = ⟨𝑧, 𝑦⟩)
1918eqeq2d 2809 . . . . . . 7 (𝑣 = 𝑧 → (𝑤 = ⟨𝑣, 𝑦⟩ ↔ 𝑤 = ⟨𝑧, 𝑦⟩))
20 cbvopab1.2 . . . . . . . 8 𝑥𝜓
21 cbvopab1.3 . . . . . . . 8 (𝑥 = 𝑧 → (𝜑𝜓))
2220, 21sbhypf 3500 . . . . . . 7 (𝑣 = 𝑧 → ([𝑣 / 𝑥]𝜑𝜓))
2319, 22anbi12d 633 . . . . . 6 (𝑣 = 𝑧 → ((𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑) ↔ (𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)))
2423exbidv 1922 . . . . 5 (𝑣 = 𝑧 → (∃𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)))
2516, 17, 24cbvexv1 2351 . . . 4 (∃𝑣𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑) ↔ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓))
2611, 25bitri 278 . . 3 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓))
2726abbii 2863 . 2 {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)}
28 df-opab 5093 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
29 df-opab 5093 . 2 {⟨𝑧, 𝑦⟩ ∣ 𝜓} = {𝑤 ∣ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)}
3027, 28, 293eqtr4i 2831 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wnf 1785  [wsb 2069  {cab 2776  cop 4531  {copab 5092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-v 3443  df-un 3886  df-sn 4526  df-pr 4528  df-op 4532  df-opab 5093
This theorem is referenced by:  cbvopab1v  5107  cbvmptf  5129  phpreu  35041  poimirlem26  35083  mbfposadd  35104
  Copyright terms: Public domain W3C validator