Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvopab1v | Structured version Visualization version GIF version |
Description: Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
cbvopab1v.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvopab1v | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1915 | . 2 ⊢ Ⅎ𝑧𝜑 | |
2 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvopab1v.1 | . 2 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvopab1 5105 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 {copab 5094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3863 df-sn 4523 df-pr 4525 df-op 4529 df-opab 5095 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |