| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvopab1v | Structured version Visualization version GIF version | ||
| Description: Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) Reduce axiom usage. (Revised by GG, 17-Nov-2024.) |
| Ref | Expression |
|---|---|
| cbvopab1v.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvopab1v | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4849 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → 〈𝑥, 𝑦〉 = 〈𝑧, 𝑦〉) | |
| 2 | 1 | eqeq2d 2746 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑤 = 〈𝑥, 𝑦〉 ↔ 𝑤 = 〈𝑧, 𝑦〉)) |
| 3 | cbvopab1v.1 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑤 = 〈𝑧, 𝑦〉 ∧ 𝜓))) |
| 5 | 4 | exbidv 1921 | . . . 4 ⊢ (𝑥 = 𝑧 → (∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ 𝜓))) |
| 6 | 5 | cbvexvw 2036 | . . 3 ⊢ (∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑧∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ 𝜓)) |
| 7 | 6 | abbii 2802 | . 2 ⊢ {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑤 ∣ ∃𝑧∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ 𝜓)} |
| 8 | df-opab 5182 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 9 | df-opab 5182 | . 2 ⊢ {〈𝑧, 𝑦〉 ∣ 𝜓} = {𝑤 ∣ ∃𝑧∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ 𝜓)} | |
| 10 | 7, 8, 9 | 3eqtr4i 2768 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 {cab 2713 〈cop 4607 {copab 5181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 |
| This theorem is referenced by: cbvmptv 5225 cbvmptvw2 36252 |
| Copyright terms: Public domain | W3C validator |