![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvopab1v | Structured version Visualization version GIF version |
Description: Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) Reduce axiom usage. (Revised by Gino Giotto, 17-Nov-2024.) |
Ref | Expression |
---|---|
cbvopab1v.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvopab1v | ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4874 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → ⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑦⟩) | |
2 | 1 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ 𝑤 = ⟨𝑧, 𝑦⟩)) |
3 | cbvopab1v.1 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | anbi12d 630 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓))) |
5 | 4 | exbidv 1923 | . . . 4 ⊢ (𝑥 = 𝑧 → (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓))) |
6 | 5 | cbvexvw 2039 | . . 3 ⊢ (∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑧∃𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)) |
7 | 6 | abbii 2801 | . 2 ⊢ {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑧∃𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)} |
8 | df-opab 5212 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
9 | df-opab 5212 | . 2 ⊢ {⟨𝑧, 𝑦⟩ ∣ 𝜓} = {𝑤 ∣ ∃𝑧∃𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)} | |
10 | 7, 8, 9 | 3eqtr4i 2769 | 1 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∃wex 1780 {cab 2708 ⟨cop 4635 {copab 5211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5212 |
This theorem is referenced by: cbvmptv 5262 |
Copyright terms: Public domain | W3C validator |