| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvopabdavw | Structured version Visualization version GIF version | ||
| Description: Change bound variables in an ordered-pair class abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvopabdavw.1 | ⊢ (((𝜑 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| cbvopabdavw | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑧, 𝑤〉 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧) | |
| 2 | simpr 484 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤) | |
| 3 | 1, 2 | opeq12d 4828 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 〈𝑥, 𝑦〉 = 〈𝑧, 𝑤〉) |
| 4 | 3 | eqeq2d 2742 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑡 = 〈𝑥, 𝑦〉 ↔ 𝑡 = 〈𝑧, 𝑤〉)) |
| 5 | cbvopabdavw.1 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝜓 ↔ 𝜒)) | |
| 6 | 4, 5 | anbi12d 632 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑡 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝑡 = 〈𝑧, 𝑤〉 ∧ 𝜒))) |
| 7 | 6 | cbvexdvaw 2040 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑧) → (∃𝑦(𝑡 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ∃𝑤(𝑡 = 〈𝑧, 𝑤〉 ∧ 𝜒))) |
| 8 | 7 | cbvexdvaw 2040 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑡 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ∃𝑧∃𝑤(𝑡 = 〈𝑧, 𝑤〉 ∧ 𝜒))) |
| 9 | 8 | abbidv 2797 | . 2 ⊢ (𝜑 → {𝑡 ∣ ∃𝑥∃𝑦(𝑡 = 〈𝑥, 𝑦〉 ∧ 𝜓)} = {𝑡 ∣ ∃𝑧∃𝑤(𝑡 = 〈𝑧, 𝑤〉 ∧ 𝜒)}) |
| 10 | df-opab 5149 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑡 ∣ ∃𝑥∃𝑦(𝑡 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
| 11 | df-opab 5149 | . 2 ⊢ {〈𝑧, 𝑤〉 ∣ 𝜒} = {𝑡 ∣ ∃𝑧∃𝑤(𝑡 = 〈𝑧, 𝑤〉 ∧ 𝜒)} | |
| 12 | 9, 10, 11 | 3eqtr4g 2791 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑧, 𝑤〉 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 {cab 2709 〈cop 4577 {copab 5148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-opab 5149 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |