![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvopabdavw | Structured version Visualization version GIF version |
Description: Change bound variables in an ordered-pair class abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.) |
Ref | Expression |
---|---|
cbvopabdavw.1 | ⊢ (((𝜑 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
cbvopabdavw | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑧, 𝑤〉 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧) | |
2 | simpr 484 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤) | |
3 | 1, 2 | opeq12d 4905 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 〈𝑥, 𝑦〉 = 〈𝑧, 𝑤〉) |
4 | 3 | eqeq2d 2751 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑡 = 〈𝑥, 𝑦〉 ↔ 𝑡 = 〈𝑧, 𝑤〉)) |
5 | cbvopabdavw.1 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝜓 ↔ 𝜒)) | |
6 | 4, 5 | anbi12d 631 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑡 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝑡 = 〈𝑧, 𝑤〉 ∧ 𝜒))) |
7 | 6 | cbvexdvaw 2038 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑧) → (∃𝑦(𝑡 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ∃𝑤(𝑡 = 〈𝑧, 𝑤〉 ∧ 𝜒))) |
8 | 7 | cbvexdvaw 2038 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑡 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ∃𝑧∃𝑤(𝑡 = 〈𝑧, 𝑤〉 ∧ 𝜒))) |
9 | 8 | abbidv 2811 | . 2 ⊢ (𝜑 → {𝑡 ∣ ∃𝑥∃𝑦(𝑡 = 〈𝑥, 𝑦〉 ∧ 𝜓)} = {𝑡 ∣ ∃𝑧∃𝑤(𝑡 = 〈𝑧, 𝑤〉 ∧ 𝜒)}) |
10 | df-opab 5229 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑡 ∣ ∃𝑥∃𝑦(𝑡 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
11 | df-opab 5229 | . 2 ⊢ {〈𝑧, 𝑤〉 ∣ 𝜒} = {𝑡 ∣ ∃𝑧∃𝑤(𝑡 = 〈𝑧, 𝑤〉 ∧ 𝜒)} | |
12 | 9, 10, 11 | 3eqtr4g 2805 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑧, 𝑤〉 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 {cab 2717 〈cop 4654 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |