Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
opeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
opeq12d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opeq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | opeq12 4812 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉) |
Copyright terms: Public domain | W3C validator |