MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvopabvOLD Structured version   Visualization version   GIF version

Theorem cbvopabvOLD 5144
Description: Obsolete version of cbvopabv 5143 as of 15-Oct-2024. (Contributed by NM, 15-Oct-1996.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
cbvopabvOLD.1 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
Assertion
Ref Expression
cbvopabvOLD {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤   𝜑,𝑧,𝑤   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑧,𝑤)

Proof of Theorem cbvopabvOLD
StepHypRef Expression
1 nfv 1918 . 2 𝑧𝜑
2 nfv 1918 . 2 𝑤𝜑
3 nfv 1918 . 2 𝑥𝜓
4 nfv 1918 . 2 𝑦𝜓
5 cbvopabvOLD.1 . 2 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
61, 2, 3, 4, 5cbvopab 5142 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  {copab 5132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator