![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvopabvOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cbvopabv 5239 as of 15-Oct-2024. (Contributed by NM, 15-Oct-1996.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvopabvOLD.1 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvopabvOLD | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1913 | . 2 ⊢ Ⅎ𝑧𝜑 | |
2 | nfv 1913 | . 2 ⊢ Ⅎ𝑤𝜑 | |
3 | nfv 1913 | . 2 ⊢ Ⅎ𝑥𝜓 | |
4 | nfv 1913 | . 2 ⊢ Ⅎ𝑦𝜓 | |
5 | cbvopabvOLD.1 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvopab 5238 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |