![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvopabvOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cbvopabv 5222 as of 15-Oct-2024. (Contributed by NM, 15-Oct-1996.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvopabvOLD.1 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvopabvOLD | ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑧𝜑 | |
2 | nfv 1918 | . 2 ⊢ Ⅎ𝑤𝜑 | |
3 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜓 | |
4 | nfv 1918 | . 2 ⊢ Ⅎ𝑦𝜓 | |
5 | cbvopabvOLD.1 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvopab 5221 | 1 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 {copab 5211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5212 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |