| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvoprab3davw | Structured version Visualization version GIF version | ||
| Description: Change the third bound variable in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvoprab3davw.1 | ⊢ ((𝜑 ∧ 𝑧 = 𝑤) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| cbvoprab3davw | ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 = 𝑤) → 𝑧 = 𝑤) | |
| 2 | 1 | opeq2d 4853 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 = 𝑤) → 〈〈𝑥, 𝑦〉, 𝑧〉 = 〈〈𝑥, 𝑦〉, 𝑤〉) |
| 3 | 2 | eqeq2d 2745 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 = 𝑤) → (𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ 𝑡 = 〈〈𝑥, 𝑦〉, 𝑤〉)) |
| 4 | cbvoprab3davw.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 = 𝑤) → (𝜓 ↔ 𝜒)) | |
| 5 | 3, 4 | anbi12d 632 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 𝑤) → ((𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓) ↔ (𝑡 = 〈〈𝑥, 𝑦〉, 𝑤〉 ∧ 𝜒))) |
| 6 | 5 | cbvexdvaw 2037 | . . . 4 ⊢ (𝜑 → (∃𝑧(𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓) ↔ ∃𝑤(𝑡 = 〈〈𝑥, 𝑦〉, 𝑤〉 ∧ 𝜒))) |
| 7 | 6 | 2exbidv 1923 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧(𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓) ↔ ∃𝑥∃𝑦∃𝑤(𝑡 = 〈〈𝑥, 𝑦〉, 𝑤〉 ∧ 𝜒))) |
| 8 | 7 | abbidv 2800 | . 2 ⊢ (𝜑 → {𝑡 ∣ ∃𝑥∃𝑦∃𝑧(𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓)} = {𝑡 ∣ ∃𝑥∃𝑦∃𝑤(𝑡 = 〈〈𝑥, 𝑦〉, 𝑤〉 ∧ 𝜒)}) |
| 9 | df-oprab 7403 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {𝑡 ∣ ∃𝑥∃𝑦∃𝑧(𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓)} | |
| 10 | df-oprab 7403 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ 𝜒} = {𝑡 ∣ ∃𝑥∃𝑦∃𝑤(𝑡 = 〈〈𝑥, 𝑦〉, 𝑤〉 ∧ 𝜒)} | |
| 11 | 8, 9, 10 | 3eqtr4g 2794 | 1 ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 {cab 2712 〈cop 4605 {coprab 7400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-oprab 7403 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |