Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvoprab2davw Structured version   Visualization version   GIF version

Theorem cbvoprab2davw 36211
Description: Change the second bound variable in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvoprab2davw.1 ((𝜑𝑦 = 𝑤) → (𝜓𝜒))
Assertion
Ref Expression
cbvoprab2davw (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∣ 𝜒})
Distinct variable groups:   𝜑,𝑥,𝑦,𝑤   𝜑,𝑧,𝑦,𝑤   𝜓,𝑤   𝜒,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑧,𝑤)

Proof of Theorem cbvoprab2davw
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 opeq2 4847 . . . . . . . . . 10 (𝑦 = 𝑤 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑤⟩)
21adantl 481 . . . . . . . . 9 ((𝜑𝑦 = 𝑤) → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑤⟩)
32opeq1d 4852 . . . . . . . 8 ((𝜑𝑦 = 𝑤) → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩)
43eqeq2d 2745 . . . . . . 7 ((𝜑𝑦 = 𝑤) → (𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝑡 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩))
5 cbvoprab2davw.1 . . . . . . 7 ((𝜑𝑦 = 𝑤) → (𝜓𝜒))
64, 5anbi12d 632 . . . . . 6 ((𝜑𝑦 = 𝑤) → ((𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ (𝑡 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜒)))
76exbidv 1920 . . . . 5 ((𝜑𝑦 = 𝑤) → (∃𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑧(𝑡 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜒)))
87cbvexdvaw 2037 . . . 4 (𝜑 → (∃𝑦𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑤𝑧(𝑡 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜒)))
98exbidv 1920 . . 3 (𝜑 → (∃𝑥𝑦𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑥𝑤𝑧(𝑡 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜒)))
109abbidv 2800 . 2 (𝜑 → {𝑡 ∣ ∃𝑥𝑦𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)} = {𝑡 ∣ ∃𝑥𝑤𝑧(𝑡 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜒)})
11 df-oprab 7403 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {𝑡 ∣ ∃𝑥𝑦𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)}
12 df-oprab 7403 . 2 {⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∣ 𝜒} = {𝑡 ∣ ∃𝑥𝑤𝑧(𝑡 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜒)}
1310, 11, 123eqtr4g 2794 1 (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∣ 𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  {cab 2712  cop 4605  {coprab 7400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-oprab 7403
This theorem is referenced by:  cbvmpo2davw2  36232
  Copyright terms: Public domain W3C validator