Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvrexsvw | Structured version Visualization version GIF version |
Description: Change bound variable by using a substitution. Version of cbvrexsv 3402 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 2-Mar-2008.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvrexsvw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1920 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
2 | nfs1v 2156 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
3 | sbequ12 2247 | . . 3 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
4 | 1, 2, 3 | cbvrexw 3372 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑧 ∈ 𝐴 [𝑧 / 𝑥]𝜑) |
5 | nfv 1920 | . . 3 ⊢ Ⅎ𝑦[𝑧 / 𝑥]𝜑 | |
6 | nfv 1920 | . . 3 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | |
7 | sbequ 2089 | . . 3 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
8 | 5, 6, 7 | cbvrexw 3372 | . 2 ⊢ (∃𝑧 ∈ 𝐴 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
9 | 4, 8 | bitri 274 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2070 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-10 2140 ax-11 2157 ax-12 2174 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1786 df-nf 1790 df-sb 2071 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 |
This theorem is referenced by: rspesbca 3818 ac6sf 10229 ac6gf 35869 |
Copyright terms: Public domain | W3C validator |