MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6sf Structured version   Visualization version   GIF version

Theorem ac6sf 10483
Description: Version of ac6 10474 with bound-variable hypothesis. (Contributed by NM, 2-Mar-2008.)
Hypotheses
Ref Expression
ac6sf.1 𝑦𝜓
ac6sf.2 𝐴 ∈ V
ac6sf.3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6sf (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑥,𝑦,𝐵,𝑓   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑓)   𝐴(𝑦)

Proof of Theorem ac6sf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvrexsvw 3315 . . 3 (∃𝑦𝐵 𝜑 ↔ ∃𝑧𝐵 [𝑧 / 𝑦]𝜑)
21ralbii 3093 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑧𝐵 [𝑧 / 𝑦]𝜑)
3 ac6sf.2 . . 3 𝐴 ∈ V
4 ac6sf.1 . . . 4 𝑦𝜓
5 ac6sf.3 . . . 4 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
64, 5sbhypf 3538 . . 3 (𝑧 = (𝑓𝑥) → ([𝑧 / 𝑦]𝜑𝜓))
73, 6ac6s 10478 . 2 (∀𝑥𝐴𝑧𝐵 [𝑧 / 𝑦]𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
82, 7sylbi 216 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wnf 1785  [wsb 2067  wcel 2106  wral 3061  wrex 3070  Vcvv 3474  wf 6539  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-reg 9586  ax-inf2 9635  ax-ac2 10457
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-en 8939  df-r1 9758  df-rank 9759  df-card 9933  df-ac 10110
This theorem is referenced by:  ac6s3f  37034
  Copyright terms: Public domain W3C validator