Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ac6sf | Structured version Visualization version GIF version |
Description: Version of ac6 10167 with bound-variable hypothesis. (Contributed by NM, 2-Mar-2008.) |
Ref | Expression |
---|---|
ac6sf.1 | ⊢ Ⅎ𝑦𝜓 |
ac6sf.2 | ⊢ 𝐴 ∈ V |
ac6sf.3 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ac6sf | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvrexsvw 3392 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐵 [𝑧 / 𝑦]𝜑) | |
2 | 1 | ralbii 3090 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ 𝐵 [𝑧 / 𝑦]𝜑) |
3 | ac6sf.2 | . . 3 ⊢ 𝐴 ∈ V | |
4 | ac6sf.1 | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
5 | ac6sf.3 | . . . 4 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
6 | 4, 5 | sbhypf 3481 | . . 3 ⊢ (𝑧 = (𝑓‘𝑥) → ([𝑧 / 𝑦]𝜑 ↔ 𝜓)) |
7 | 3, 6 | ac6s 10171 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑧 ∈ 𝐵 [𝑧 / 𝑦]𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
8 | 2, 7 | sylbi 216 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 Ⅎwnf 1787 [wsb 2068 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ⟶wf 6414 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-reg 9281 ax-inf2 9329 ax-ac2 10150 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-en 8692 df-r1 9453 df-rank 9454 df-card 9628 df-ac 9803 |
This theorem is referenced by: ac6s3f 36256 |
Copyright terms: Public domain | W3C validator |