| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ac6sf | Structured version Visualization version GIF version | ||
| Description: Version of ac6 10499 with bound-variable hypothesis. (Contributed by NM, 2-Mar-2008.) |
| Ref | Expression |
|---|---|
| ac6sf.1 | ⊢ Ⅎ𝑦𝜓 |
| ac6sf.2 | ⊢ 𝐴 ∈ V |
| ac6sf.3 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ac6sf | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrexsvw 3301 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐵 [𝑧 / 𝑦]𝜑) | |
| 2 | 1 | ralbii 3083 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ 𝐵 [𝑧 / 𝑦]𝜑) |
| 3 | ac6sf.2 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | ac6sf.1 | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
| 5 | ac6sf.3 | . . . 4 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
| 6 | 4, 5 | sbhypf 3528 | . . 3 ⊢ (𝑧 = (𝑓‘𝑥) → ([𝑧 / 𝑦]𝜑 ↔ 𝜓)) |
| 7 | 3, 6 | ac6s 10503 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑧 ∈ 𝐵 [𝑧 / 𝑦]𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 8 | 2, 7 | sylbi 217 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 [wsb 2065 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ⟶wf 6532 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-reg 9611 ax-inf2 9660 ax-ac2 10482 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-en 8965 df-r1 9783 df-rank 9784 df-card 9958 df-ac 10135 |
| This theorem is referenced by: ac6s3f 38200 |
| Copyright terms: Public domain | W3C validator |