MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvriotav Structured version   Visualization version   GIF version

Theorem cbvriotav 7361
Description: Change bound variable in a restricted description binder. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker cbvriotavw 7357 when possible. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
cbvriotav.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvriotav (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvriotav
StepHypRef Expression
1 nfv 1914 . 2 𝑦𝜑
2 nfv 1914 . 2 𝑥𝜓
3 cbvriotav.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvriota 7360 1 (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  crio 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2371  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-ss 3934  df-sn 4593  df-uni 4875  df-iota 6467  df-riota 7347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator