MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvriota Structured version   Visualization version   GIF version

Theorem cbvriota 7380
Description: Change bound variable in a restricted description binder. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker cbvriotaw 7376 when possible. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvriota.1 𝑦𝜑
cbvriota.2 𝑥𝜓
cbvriota.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvriota (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvriota
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2818 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2 sbequ12 2252 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
31, 2anbi12d 632 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝜑) ↔ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)))
4 nfv 1914 . . . 4 𝑧(𝑥𝐴𝜑)
5 nfv 1914 . . . . 5 𝑥 𝑧𝐴
6 nfs1v 2157 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
75, 6nfan 1899 . . . 4 𝑥(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
83, 4, 7cbviota 6498 . . 3 (℩𝑥(𝑥𝐴𝜑)) = (℩𝑧(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑))
9 eleq1w 2818 . . . . 5 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
10 sbequ 2084 . . . . . 6 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
11 cbvriota.2 . . . . . . 7 𝑥𝜓
12 cbvriota.3 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜓))
1311, 12sbie 2507 . . . . . 6 ([𝑦 / 𝑥]𝜑𝜓)
1410, 13bitrdi 287 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
159, 14anbi12d 632 . . . 4 (𝑧 = 𝑦 → ((𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦𝐴𝜓)))
16 nfv 1914 . . . . 5 𝑦 𝑧𝐴
17 cbvriota.1 . . . . . 6 𝑦𝜑
1817nfsb 2528 . . . . 5 𝑦[𝑧 / 𝑥]𝜑
1916, 18nfan 1899 . . . 4 𝑦(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
20 nfv 1914 . . . 4 𝑧(𝑦𝐴𝜓)
2115, 19, 20cbviota 6498 . . 3 (℩𝑧(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)) = (℩𝑦(𝑦𝐴𝜓))
228, 21eqtri 2759 . 2 (℩𝑥(𝑥𝐴𝜑)) = (℩𝑦(𝑦𝐴𝜓))
23 df-riota 7367 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
24 df-riota 7367 . 2 (𝑦𝐴 𝜓) = (℩𝑦(𝑦𝐴𝜓))
2522, 23, 243eqtr4i 2769 1 (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  [wsb 2065  wcel 2109  cio 6487  crio 7366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2377  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-ss 3948  df-sn 4607  df-uni 4889  df-iota 6489  df-riota 7367
This theorem is referenced by:  cbvriotav  7381
  Copyright terms: Public domain W3C validator