MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbriota Structured version   Visualization version   GIF version

Theorem csbriota 7326
Description: Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
csbriota 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem csbriota
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3849 . . . 4 (𝑧 = 𝐴𝑧 / 𝑥(𝑦𝐵 𝜑) = 𝐴 / 𝑥(𝑦𝐵 𝜑))
2 dfsbcq2 3740 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32riotabidv 7313 . . . 4 (𝑧 = 𝐴 → (𝑦𝐵 [𝑧 / 𝑥]𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
41, 3eqeq12d 2749 . . 3 (𝑧 = 𝐴 → (𝑧 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝑧 / 𝑥]𝜑) ↔ 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑)))
5 vex 3441 . . . 4 𝑧 ∈ V
6 nfs1v 2161 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
7 nfcv 2895 . . . . 5 𝑥𝐵
86, 7nfriota 7323 . . . 4 𝑥(𝑦𝐵 [𝑧 / 𝑥]𝜑)
9 sbequ12 2256 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
109riotabidv 7313 . . . 4 (𝑥 = 𝑧 → (𝑦𝐵 𝜑) = (𝑦𝐵 [𝑧 / 𝑥]𝜑))
115, 8, 10csbief 3880 . . 3 𝑧 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝑧 / 𝑥]𝜑)
124, 11vtoclg 3508 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
13 csbprc 4358 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝑦𝐵 𝜑) = ∅)
14 df-riota 7311 . . . 4 (𝑦𝐵 [𝐴 / 𝑥]𝜑) = (℩𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑))
15 euex 2574 . . . . . 6 (∃!𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑) → ∃𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑))
16 sbcex 3747 . . . . . . . 8 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
1716adantl 481 . . . . . . 7 ((𝑦𝐵[𝐴 / 𝑥]𝜑) → 𝐴 ∈ V)
1817exlimiv 1931 . . . . . 6 (∃𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑) → 𝐴 ∈ V)
1915, 18syl 17 . . . . 5 (∃!𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑) → 𝐴 ∈ V)
20 iotanul 6468 . . . . 5 (¬ ∃!𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑) → (℩𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑)) = ∅)
2119, 20nsyl5 159 . . . 4 𝐴 ∈ V → (℩𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑)) = ∅)
2214, 21eqtr2id 2781 . . 3 𝐴 ∈ V → ∅ = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
2313, 22eqtrd 2768 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
2412, 23pm2.61i 182 1 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wex 1780  [wsb 2067  wcel 2113  ∃!weu 2565  Vcvv 3437  [wsbc 3737  csb 3846  c0 4282  cio 6442  crio 7310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-ss 3915  df-nul 4283  df-sn 4578  df-uni 4861  df-iota 6444  df-riota 7311
This theorem is referenced by:  cdlemkid3N  41055  cdlemkid4  41056
  Copyright terms: Public domain W3C validator