| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | csbeq1 3901 | . . . 4
⊢ (𝑧 = 𝐴 → ⦋𝑧 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = ⦋𝐴 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑)) | 
| 2 |  | dfsbcq2 3790 | . . . . 5
⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | 
| 3 | 2 | riotabidv 7391 | . . . 4
⊢ (𝑧 = 𝐴 → (℩𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) = (℩𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | 
| 4 | 1, 3 | eqeq12d 2752 | . . 3
⊢ (𝑧 = 𝐴 → (⦋𝑧 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) ↔ ⦋𝐴 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑))) | 
| 5 |  | vex 3483 | . . . 4
⊢ 𝑧 ∈ V | 
| 6 |  | nfs1v 2155 | . . . . 5
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 | 
| 7 |  | nfcv 2904 | . . . . 5
⊢
Ⅎ𝑥𝐵 | 
| 8 | 6, 7 | nfriota 7401 | . . . 4
⊢
Ⅎ𝑥(℩𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) | 
| 9 |  | sbequ12 2250 | . . . . 5
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | 
| 10 | 9 | riotabidv 7391 | . . . 4
⊢ (𝑥 = 𝑧 → (℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑)) | 
| 11 | 5, 8, 10 | csbief 3932 | . . 3
⊢
⦋𝑧 /
𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) | 
| 12 | 4, 11 | vtoclg 3553 | . 2
⊢ (𝐴 ∈ V →
⦋𝐴 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | 
| 13 |  | csbprc 4408 | . . 3
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = ∅) | 
| 14 |  | df-riota 7389 | . . . 4
⊢
(℩𝑦
∈ 𝐵 [𝐴 / 𝑥]𝜑) = (℩𝑦(𝑦 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) | 
| 15 |  | euex 2576 | . . . . . 6
⊢
(∃!𝑦(𝑦 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → ∃𝑦(𝑦 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) | 
| 16 |  | sbcex 3797 | . . . . . . . 8
⊢
([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | 
| 17 | 16 | adantl 481 | . . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → 𝐴 ∈ V) | 
| 18 | 17 | exlimiv 1929 | . . . . . 6
⊢
(∃𝑦(𝑦 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → 𝐴 ∈ V) | 
| 19 | 15, 18 | syl 17 | . . . . 5
⊢
(∃!𝑦(𝑦 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → 𝐴 ∈ V) | 
| 20 |  | iotanul 6538 | . . . . 5
⊢ (¬
∃!𝑦(𝑦 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → (℩𝑦(𝑦 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) = ∅) | 
| 21 | 19, 20 | nsyl5 159 | . . . 4
⊢ (¬
𝐴 ∈ V →
(℩𝑦(𝑦 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) = ∅) | 
| 22 | 14, 21 | eqtr2id 2789 | . . 3
⊢ (¬
𝐴 ∈ V → ∅ =
(℩𝑦 ∈
𝐵 [𝐴 / 𝑥]𝜑)) | 
| 23 | 13, 22 | eqtrd 2776 | . 2
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | 
| 24 | 12, 23 | pm2.61i 182 | 1
⊢
⦋𝐴 /
𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑) |