MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbriota Structured version   Visualization version   GIF version

Theorem csbriota 7359
Description: Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
csbriota 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem csbriota
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3865 . . . 4 (𝑧 = 𝐴𝑧 / 𝑥(𝑦𝐵 𝜑) = 𝐴 / 𝑥(𝑦𝐵 𝜑))
2 dfsbcq2 3756 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32riotabidv 7346 . . . 4 (𝑧 = 𝐴 → (𝑦𝐵 [𝑧 / 𝑥]𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
41, 3eqeq12d 2745 . . 3 (𝑧 = 𝐴 → (𝑧 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝑧 / 𝑥]𝜑) ↔ 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑)))
5 vex 3451 . . . 4 𝑧 ∈ V
6 nfs1v 2157 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
7 nfcv 2891 . . . . 5 𝑥𝐵
86, 7nfriota 7356 . . . 4 𝑥(𝑦𝐵 [𝑧 / 𝑥]𝜑)
9 sbequ12 2252 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
109riotabidv 7346 . . . 4 (𝑥 = 𝑧 → (𝑦𝐵 𝜑) = (𝑦𝐵 [𝑧 / 𝑥]𝜑))
115, 8, 10csbief 3896 . . 3 𝑧 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝑧 / 𝑥]𝜑)
124, 11vtoclg 3520 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
13 csbprc 4372 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝑦𝐵 𝜑) = ∅)
14 df-riota 7344 . . . 4 (𝑦𝐵 [𝐴 / 𝑥]𝜑) = (℩𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑))
15 euex 2570 . . . . . 6 (∃!𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑) → ∃𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑))
16 sbcex 3763 . . . . . . . 8 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
1716adantl 481 . . . . . . 7 ((𝑦𝐵[𝐴 / 𝑥]𝜑) → 𝐴 ∈ V)
1817exlimiv 1930 . . . . . 6 (∃𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑) → 𝐴 ∈ V)
1915, 18syl 17 . . . . 5 (∃!𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑) → 𝐴 ∈ V)
20 iotanul 6489 . . . . 5 (¬ ∃!𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑) → (℩𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑)) = ∅)
2119, 20nsyl5 159 . . . 4 𝐴 ∈ V → (℩𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑)) = ∅)
2214, 21eqtr2id 2777 . . 3 𝐴 ∈ V → ∅ = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
2313, 22eqtrd 2764 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
2412, 23pm2.61i 182 1 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wex 1779  [wsb 2065  wcel 2109  ∃!weu 2561  Vcvv 3447  [wsbc 3753  csb 3862  c0 4296  cio 6462  crio 7343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-ss 3931  df-nul 4297  df-sn 4590  df-uni 4872  df-iota 6464  df-riota 7344
This theorem is referenced by:  cdlemkid3N  40927  cdlemkid4  40928
  Copyright terms: Public domain W3C validator