MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbriota Structured version   Visualization version   GIF version

Theorem csbriota 7329
Description: Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
csbriota 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem csbriota
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3858 . . . 4 (𝑧 = 𝐴𝑧 / 𝑥(𝑦𝐵 𝜑) = 𝐴 / 𝑥(𝑦𝐵 𝜑))
2 dfsbcq2 3742 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32riotabidv 7315 . . . 4 (𝑧 = 𝐴 → (𝑦𝐵 [𝑧 / 𝑥]𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
41, 3eqeq12d 2752 . . 3 (𝑧 = 𝐴 → (𝑧 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝑧 / 𝑥]𝜑) ↔ 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑)))
5 vex 3449 . . . 4 𝑧 ∈ V
6 nfs1v 2153 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
7 nfcv 2907 . . . . 5 𝑥𝐵
86, 7nfriota 7326 . . . 4 𝑥(𝑦𝐵 [𝑧 / 𝑥]𝜑)
9 sbequ12 2243 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
109riotabidv 7315 . . . 4 (𝑥 = 𝑧 → (𝑦𝐵 𝜑) = (𝑦𝐵 [𝑧 / 𝑥]𝜑))
115, 8, 10csbief 3890 . . 3 𝑧 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝑧 / 𝑥]𝜑)
124, 11vtoclg 3525 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
13 csbprc 4366 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝑦𝐵 𝜑) = ∅)
14 df-riota 7313 . . . 4 (𝑦𝐵 [𝐴 / 𝑥]𝜑) = (℩𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑))
15 euex 2575 . . . . . 6 (∃!𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑) → ∃𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑))
16 sbcex 3749 . . . . . . . 8 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
1716adantl 482 . . . . . . 7 ((𝑦𝐵[𝐴 / 𝑥]𝜑) → 𝐴 ∈ V)
1817exlimiv 1933 . . . . . 6 (∃𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑) → 𝐴 ∈ V)
1915, 18syl 17 . . . . 5 (∃!𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑) → 𝐴 ∈ V)
20 iotanul 6474 . . . . 5 (¬ ∃!𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑) → (℩𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑)) = ∅)
2119, 20nsyl5 159 . . . 4 𝐴 ∈ V → (℩𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑)) = ∅)
2214, 21eqtr2id 2789 . . 3 𝐴 ∈ V → ∅ = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
2313, 22eqtrd 2776 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
2412, 23pm2.61i 182 1 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1541  wex 1781  [wsb 2067  wcel 2106  ∃!weu 2566  Vcvv 3445  [wsbc 3739  csb 3855  c0 4282  cio 6446  crio 7312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ral 3065  df-rex 3074  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-in 3917  df-ss 3927  df-nul 4283  df-sn 4587  df-uni 4866  df-iota 6448  df-riota 7313
This theorem is referenced by:  cdlemkid3N  39396  cdlemkid4  39397
  Copyright terms: Public domain W3C validator