Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbriota Structured version   Visualization version   GIF version

Theorem csbriota 7122
 Description: Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
csbriota 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem csbriota
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3869 . . . 4 (𝑧 = 𝐴𝑧 / 𝑥(𝑦𝐵 𝜑) = 𝐴 / 𝑥(𝑦𝐵 𝜑))
2 dfsbcq2 3761 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32riotabidv 7109 . . . 4 (𝑧 = 𝐴 → (𝑦𝐵 [𝑧 / 𝑥]𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
41, 3eqeq12d 2840 . . 3 (𝑧 = 𝐴 → (𝑧 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝑧 / 𝑥]𝜑) ↔ 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑)))
5 vex 3483 . . . 4 𝑧 ∈ V
6 nfs1v 2161 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
7 nfcv 2982 . . . . 5 𝑥𝐵
86, 7nfriota 7119 . . . 4 𝑥(𝑦𝐵 [𝑧 / 𝑥]𝜑)
9 sbequ12 2255 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
109riotabidv 7109 . . . 4 (𝑥 = 𝑧 → (𝑦𝐵 𝜑) = (𝑦𝐵 [𝑧 / 𝑥]𝜑))
115, 8, 10csbief 3900 . . 3 𝑧 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝑧 / 𝑥]𝜑)
124, 11vtoclg 3553 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
13 csbprc 4341 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝑦𝐵 𝜑) = ∅)
14 df-riota 7107 . . . 4 (𝑦𝐵 [𝐴 / 𝑥]𝜑) = (℩𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑))
15 euex 2663 . . . . . 6 (∃!𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑) → ∃𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑))
16 sbcex 3768 . . . . . . . 8 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
1716adantl 485 . . . . . . 7 ((𝑦𝐵[𝐴 / 𝑥]𝜑) → 𝐴 ∈ V)
1817exlimiv 1932 . . . . . 6 (∃𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑) → 𝐴 ∈ V)
1915, 18syl 17 . . . . 5 (∃!𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑) → 𝐴 ∈ V)
20 iotanul 6321 . . . . 5 (¬ ∃!𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑) → (℩𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑)) = ∅)
2119, 20nsyl5 162 . . . 4 𝐴 ∈ V → (℩𝑦(𝑦𝐵[𝐴 / 𝑥]𝜑)) = ∅)
2214, 21syl5req 2872 . . 3 𝐴 ∈ V → ∅ = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
2313, 22eqtrd 2859 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
2412, 23pm2.61i 185 1 𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 399   = wceq 1538  ∃wex 1781  [wsb 2070   ∈ wcel 2115  ∃!weu 2654  Vcvv 3480  [wsbc 3758  ⦋csb 3866  ∅c0 4276  ℩cio 6300  ℩crio 7106 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-in 3926  df-ss 3936  df-nul 4277  df-sn 4551  df-uni 4825  df-iota 6302  df-riota 7107 This theorem is referenced by:  cdlemkid3N  38174  cdlemkid4  38175
 Copyright terms: Public domain W3C validator