MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmabs Structured version   Visualization version   GIF version

Theorem lcmabs 16624
Description: The lcm of two integers is the same as that of their absolute values. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmabs ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))

Proof of Theorem lcmabs
StepHypRef Expression
1 zre 12592 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 zre 12592 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 absor 15319 . . . 4 (𝑀 ∈ ℝ → ((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀))
4 absor 15319 . . . 4 (𝑁 ∈ ℝ → ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁))
53, 4anim12i 613 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀) ∧ ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)))
61, 2, 5syl2an 596 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀) ∧ ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)))
7 oveq12 7414 . . . 4 (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
87a1i 11 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁)))
9 oveq12 7414 . . . . 5 (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = (-𝑀 lcm 𝑁))
10 neglcm 16623 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 lcm 𝑁) = (𝑀 lcm 𝑁))
119, 10sylan9eqr 2792 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = 𝑁)) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
1211ex 412 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁)))
13 oveq12 7414 . . . . 5 (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm -𝑁))
14 lcmneg 16622 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (𝑀 lcm 𝑁))
1513, 14sylan9eqr 2792 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = -𝑁)) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
1615ex 412 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁)))
17 oveq12 7414 . . . . 5 (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = (-𝑀 lcm -𝑁))
18 znegcl 12627 . . . . . . 7 (𝑀 ∈ ℤ → -𝑀 ∈ ℤ)
19 lcmneg 16622 . . . . . . 7 ((-𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 lcm -𝑁) = (-𝑀 lcm 𝑁))
2018, 19sylan 580 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 lcm -𝑁) = (-𝑀 lcm 𝑁))
2120, 10eqtrd 2770 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 lcm -𝑁) = (𝑀 lcm 𝑁))
2217, 21sylan9eqr 2792 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = -𝑁)) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
2322ex 412 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁)))
248, 12, 16, 23ccased 1038 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀) ∧ ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁)))
256, 24mpd 15 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  cr 11128  -cneg 11467  cz 12588  abscabs 15253   lcm clcm 16607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-lcm 16609
This theorem is referenced by:  lcmgcd  16626  lcmdvds  16627  lcmgcdeq  16631
  Copyright terms: Public domain W3C validator