Step | Hyp | Ref
| Expression |
1 | | pospo.s |
. . . . 5
⊢ < =
(lt‘𝐾) |
2 | 1 | pltirr 17968 |
. . . 4
⊢ ((𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵) → ¬ 𝑥 < 𝑥) |
3 | | pospo.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
4 | 3, 1 | plttr 17975 |
. . . 4
⊢ ((𝐾 ∈ Poset ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) |
5 | 2, 4 | ispod 5503 |
. . 3
⊢ (𝐾 ∈ Poset → < Po 𝐵) |
6 | | relres 5909 |
. . . . 5
⊢ Rel ( I
↾ 𝐵) |
7 | 6 | a1i 11 |
. . . 4
⊢ (𝐾 ∈ Poset → Rel ( I
↾ 𝐵)) |
8 | | opabresid 5946 |
. . . . . . . 8
⊢ ( I
↾ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)} |
9 | 8 | eqcomi 2747 |
. . . . . . 7
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)} = ( I ↾ 𝐵) |
10 | 9 | eleq2i 2830 |
. . . . . 6
⊢
(〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)} ↔ 〈𝑥, 𝑦〉 ∈ ( I ↾ 𝐵)) |
11 | | opabidw 5431 |
. . . . . 6
⊢
(〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)} ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)) |
12 | 10, 11 | bitr3i 276 |
. . . . 5
⊢
(〈𝑥, 𝑦〉 ∈ ( I ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)) |
13 | | pospo.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
14 | 3, 13 | posref 17951 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵) → 𝑥 ≤ 𝑥) |
15 | | df-br 5071 |
. . . . . . . 8
⊢ (𝑥 ≤ 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ≤ ) |
16 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑥)) |
17 | 15, 16 | bitr3id 284 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (〈𝑥, 𝑦〉 ∈ ≤ ↔ 𝑥 ≤ 𝑥)) |
18 | 14, 17 | syl5ibrcom 246 |
. . . . . 6
⊢ ((𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵) → (𝑦 = 𝑥 → 〈𝑥, 𝑦〉 ∈ ≤ )) |
19 | 18 | expimpd 453 |
. . . . 5
⊢ (𝐾 ∈ Poset → ((𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥) → 〈𝑥, 𝑦〉 ∈ ≤ )) |
20 | 12, 19 | syl5bi 241 |
. . . 4
⊢ (𝐾 ∈ Poset →
(〈𝑥, 𝑦〉 ∈ ( I ↾ 𝐵) → 〈𝑥, 𝑦〉 ∈ ≤ )) |
21 | 7, 20 | relssdv 5687 |
. . 3
⊢ (𝐾 ∈ Poset → ( I ↾
𝐵) ⊆ ≤
) |
22 | 5, 21 | jca 511 |
. 2
⊢ (𝐾 ∈ Poset → ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) |
23 | | simpl 482 |
. . . 4
⊢ ((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) → 𝐾 ∈ 𝑉) |
24 | 3 | a1i 11 |
. . . 4
⊢ ((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) → 𝐵 = (Base‘𝐾)) |
25 | 13 | a1i 11 |
. . . 4
⊢ ((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) → ≤ =
(le‘𝐾)) |
26 | | equid 2016 |
. . . . . 6
⊢ 𝑥 = 𝑥 |
27 | | simpr 484 |
. . . . . . 7
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
28 | | resieq 5891 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑥( I ↾ 𝐵)𝑥 ↔ 𝑥 = 𝑥)) |
29 | 27, 27, 28 | syl2anc 583 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵) → (𝑥( I ↾ 𝐵)𝑥 ↔ 𝑥 = 𝑥)) |
30 | 26, 29 | mpbiri 257 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵) → 𝑥( I ↾ 𝐵)𝑥) |
31 | | simplrr 774 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵) → ( I ↾ 𝐵) ⊆ ≤ ) |
32 | 31 | ssbrd 5113 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵) → (𝑥( I ↾ 𝐵)𝑥 → 𝑥 ≤ 𝑥)) |
33 | 30, 32 | mpd 15 |
. . . 4
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵) → 𝑥 ≤ 𝑥) |
34 | 3, 13, 1 | pleval2i 17969 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) |
35 | 34 | 3adant1 1128 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) |
36 | 3, 13, 1 | pleval2i 17969 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑦 ≤ 𝑥 → (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) |
37 | 36 | ancoms 458 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑦 ≤ 𝑥 → (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) |
38 | 37 | 3adant1 1128 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑦 ≤ 𝑥 → (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) |
39 | | simprl 767 |
. . . . . . . 8
⊢ ((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) → < Po 𝐵) |
40 | | po2nr 5508 |
. . . . . . . . 9
⊢ (( < Po 𝐵 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ¬ (𝑥 < 𝑦 ∧ 𝑦 < 𝑥)) |
41 | 40 | 3impb 1113 |
. . . . . . . 8
⊢ (( < Po 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ¬ (𝑥 < 𝑦 ∧ 𝑦 < 𝑥)) |
42 | 39, 41 | syl3an1 1161 |
. . . . . . 7
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ¬ (𝑥 < 𝑦 ∧ 𝑦 < 𝑥)) |
43 | 42 | pm2.21d 121 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑥) → 𝑥 = 𝑦)) |
44 | | simpl 482 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 ∧ 𝑦 < 𝑥) → 𝑥 = 𝑦) |
45 | 44 | a1i 11 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 = 𝑦 ∧ 𝑦 < 𝑥) → 𝑥 = 𝑦)) |
46 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑥 < 𝑦 ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) |
47 | 46 | equcomd 2023 |
. . . . . . 7
⊢ ((𝑥 < 𝑦 ∧ 𝑦 = 𝑥) → 𝑥 = 𝑦) |
48 | 47 | a1i 11 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 < 𝑦 ∧ 𝑦 = 𝑥) → 𝑥 = 𝑦)) |
49 | | simpl 482 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 ∧ 𝑦 = 𝑥) → 𝑥 = 𝑦) |
50 | 49 | a1i 11 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 = 𝑦 ∧ 𝑦 = 𝑥) → 𝑥 = 𝑦)) |
51 | 43, 45, 48, 50 | ccased 1035 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (((𝑥 < 𝑦 ∨ 𝑥 = 𝑦) ∧ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → 𝑥 = 𝑦)) |
52 | 35, 38, 51 | syl2and 607 |
. . . 4
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) |
53 | | simpr1 1192 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
54 | | simpr2 1193 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
55 | 53, 54, 34 | syl2anc 583 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 ≤ 𝑦 → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) |
56 | | simpr3 1194 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
57 | 3, 13, 1 | pleval2i 17969 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦 ≤ 𝑧 → (𝑦 < 𝑧 ∨ 𝑦 = 𝑧))) |
58 | 54, 56, 57 | syl2anc 583 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 ≤ 𝑧 → (𝑦 < 𝑧 ∨ 𝑦 = 𝑧))) |
59 | | potr 5507 |
. . . . . . . 8
⊢ (( < Po 𝐵 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) |
60 | 39, 59 | sylan 579 |
. . . . . . 7
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) |
61 | | simpll 763 |
. . . . . . . 8
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐾 ∈ 𝑉) |
62 | 13, 1 | pltle 17966 |
. . . . . . . 8
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥 < 𝑧 → 𝑥 ≤ 𝑧)) |
63 | 61, 53, 56, 62 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 < 𝑧 → 𝑥 ≤ 𝑧)) |
64 | 60, 63 | syld 47 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 ≤ 𝑧)) |
65 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 < 𝑧 ↔ 𝑦 < 𝑧)) |
66 | 65 | biimpar 477 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧) |
67 | 66, 63 | syl5 34 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 = 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 ≤ 𝑧)) |
68 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝑥 < 𝑦 ↔ 𝑥 < 𝑧)) |
69 | 68 | biimpac 478 |
. . . . . . 7
⊢ ((𝑥 < 𝑦 ∧ 𝑦 = 𝑧) → 𝑥 < 𝑧) |
70 | 69, 63 | syl5 34 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 < 𝑦 ∧ 𝑦 = 𝑧) → 𝑥 ≤ 𝑧)) |
71 | 53, 33 | syldan 590 |
. . . . . . 7
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 ≤ 𝑥) |
72 | | eqtr 2761 |
. . . . . . . 8
⊢ ((𝑥 = 𝑦 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑧) |
73 | 72 | breq2d 5082 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 ∧ 𝑦 = 𝑧) → (𝑥 ≤ 𝑥 ↔ 𝑥 ≤ 𝑧)) |
74 | 71, 73 | syl5ibcom 244 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 = 𝑦 ∧ 𝑦 = 𝑧) → 𝑥 ≤ 𝑧)) |
75 | 64, 67, 70, 74 | ccased 1035 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 < 𝑦 ∨ 𝑥 = 𝑦) ∧ (𝑦 < 𝑧 ∨ 𝑦 = 𝑧)) → 𝑥 ≤ 𝑧)) |
76 | 55, 58, 75 | syl2and 607 |
. . . 4
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) |
77 | 23, 24, 25, 33, 52, 76 | isposd 17956 |
. . 3
⊢ ((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) → 𝐾 ∈ Poset) |
78 | 77 | ex 412 |
. 2
⊢ (𝐾 ∈ 𝑉 → (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ ) → 𝐾 ∈ Poset)) |
79 | 22, 78 | impbid2 225 |
1
⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Poset ↔ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ ))) |