MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pospo Structured version   Visualization version   GIF version

Theorem pospo 17642
Description: Write a poset structure in terms of the proper-class poset predicate (strict less than version). (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
pospo.b 𝐵 = (Base‘𝐾)
pospo.l = (le‘𝐾)
pospo.s < = (lt‘𝐾)
Assertion
Ref Expression
pospo (𝐾𝑉 → (𝐾 ∈ Poset ↔ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))

Proof of Theorem pospo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pospo.s . . . . 5 < = (lt‘𝐾)
21pltirr 17632 . . . 4 ((𝐾 ∈ Poset ∧ 𝑥𝐵) → ¬ 𝑥 < 𝑥)
3 pospo.b . . . . 5 𝐵 = (Base‘𝐾)
43, 1plttr 17639 . . . 4 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
52, 4ispod 5452 . . 3 (𝐾 ∈ Poset → < Po 𝐵)
6 relres 5853 . . . . 5 Rel ( I ↾ 𝐵)
76a1i 11 . . . 4 (𝐾 ∈ Poset → Rel ( I ↾ 𝐵))
8 opabresid 5890 . . . . . . . 8 ( I ↾ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)}
98eqcomi 2768 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} = ( I ↾ 𝐵)
109eleq2i 2844 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐵))
11 opabidw 5383 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} ↔ (𝑥𝐵𝑦 = 𝑥))
1210, 11bitr3i 280 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐵) ↔ (𝑥𝐵𝑦 = 𝑥))
13 pospo.l . . . . . . . 8 = (le‘𝐾)
143, 13posref 17620 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑥𝐵) → 𝑥 𝑥)
15 df-br 5034 . . . . . . . 8 (𝑥 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ )
16 breq2 5037 . . . . . . . 8 (𝑦 = 𝑥 → (𝑥 𝑦𝑥 𝑥))
1715, 16bitr3id 288 . . . . . . 7 (𝑦 = 𝑥 → (⟨𝑥, 𝑦⟩ ∈ 𝑥 𝑥))
1814, 17syl5ibrcom 250 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑥𝐵) → (𝑦 = 𝑥 → ⟨𝑥, 𝑦⟩ ∈ ))
1918expimpd 458 . . . . 5 (𝐾 ∈ Poset → ((𝑥𝐵𝑦 = 𝑥) → ⟨𝑥, 𝑦⟩ ∈ ))
2012, 19syl5bi 245 . . . 4 (𝐾 ∈ Poset → (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐵) → ⟨𝑥, 𝑦⟩ ∈ ))
217, 20relssdv 5631 . . 3 (𝐾 ∈ Poset → ( I ↾ 𝐵) ⊆ )
225, 21jca 516 . 2 (𝐾 ∈ Poset → ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ))
23 simpl 487 . . . 4 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → 𝐾𝑉)
243a1i 11 . . . 4 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → 𝐵 = (Base‘𝐾))
2513a1i 11 . . . 4 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → = (le‘𝐾))
26 equid 2020 . . . . . 6 𝑥 = 𝑥
27 simpr 489 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → 𝑥𝐵)
28 resieq 5835 . . . . . . 7 ((𝑥𝐵𝑥𝐵) → (𝑥( I ↾ 𝐵)𝑥𝑥 = 𝑥))
2927, 27, 28syl2anc 588 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → (𝑥( I ↾ 𝐵)𝑥𝑥 = 𝑥))
3026, 29mpbiri 261 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → 𝑥( I ↾ 𝐵)𝑥)
31 simplrr 778 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → ( I ↾ 𝐵) ⊆ )
3231ssbrd 5076 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → (𝑥( I ↾ 𝐵)𝑥𝑥 𝑥))
3330, 32mpd 15 . . . 4 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → 𝑥 𝑥)
343, 13, 1pleval2i 17633 . . . . . 6 ((𝑥𝐵𝑦𝐵) → (𝑥 𝑦 → (𝑥 < 𝑦𝑥 = 𝑦)))
35343adant1 1128 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → (𝑥 𝑦 → (𝑥 < 𝑦𝑥 = 𝑦)))
363, 13, 1pleval2i 17633 . . . . . . 7 ((𝑦𝐵𝑥𝐵) → (𝑦 𝑥 → (𝑦 < 𝑥𝑦 = 𝑥)))
3736ancoms 463 . . . . . 6 ((𝑥𝐵𝑦𝐵) → (𝑦 𝑥 → (𝑦 < 𝑥𝑦 = 𝑥)))
38373adant1 1128 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → (𝑦 𝑥 → (𝑦 < 𝑥𝑦 = 𝑥)))
39 simprl 771 . . . . . . . 8 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → < Po 𝐵)
40 po2nr 5457 . . . . . . . . 9 (( < Po 𝐵 ∧ (𝑥𝐵𝑦𝐵)) → ¬ (𝑥 < 𝑦𝑦 < 𝑥))
41403impb 1113 . . . . . . . 8 (( < Po 𝐵𝑥𝐵𝑦𝐵) → ¬ (𝑥 < 𝑦𝑦 < 𝑥))
4239, 41syl3an1 1161 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ¬ (𝑥 < 𝑦𝑦 < 𝑥))
4342pm2.21d 121 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 < 𝑦𝑦 < 𝑥) → 𝑥 = 𝑦))
44 simpl 487 . . . . . . 7 ((𝑥 = 𝑦𝑦 < 𝑥) → 𝑥 = 𝑦)
4544a1i 11 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 = 𝑦𝑦 < 𝑥) → 𝑥 = 𝑦))
46 simpr 489 . . . . . . . 8 ((𝑥 < 𝑦𝑦 = 𝑥) → 𝑦 = 𝑥)
4746equcomd 2027 . . . . . . 7 ((𝑥 < 𝑦𝑦 = 𝑥) → 𝑥 = 𝑦)
4847a1i 11 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 < 𝑦𝑦 = 𝑥) → 𝑥 = 𝑦))
49 simpl 487 . . . . . . 7 ((𝑥 = 𝑦𝑦 = 𝑥) → 𝑥 = 𝑦)
5049a1i 11 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 = 𝑦𝑦 = 𝑥) → 𝑥 = 𝑦))
5143, 45, 48, 50ccased 1035 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → (((𝑥 < 𝑦𝑥 = 𝑦) ∧ (𝑦 < 𝑥𝑦 = 𝑥)) → 𝑥 = 𝑦))
5235, 38, 51syl2and 611 . . . 4 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
53 simpr1 1192 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑥𝐵)
54 simpr2 1193 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
5553, 54, 34syl2anc 588 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 𝑦 → (𝑥 < 𝑦𝑥 = 𝑦)))
56 simpr3 1194 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
573, 13, 1pleval2i 17633 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (𝑦 𝑧 → (𝑦 < 𝑧𝑦 = 𝑧)))
5854, 56, 57syl2anc 588 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑦 𝑧 → (𝑦 < 𝑧𝑦 = 𝑧)))
59 potr 5456 . . . . . . . 8 (( < Po 𝐵 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
6039, 59sylan 584 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
61 simpll 767 . . . . . . . 8 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝐾𝑉)
6213, 1pltle 17630 . . . . . . . 8 ((𝐾𝑉𝑥𝐵𝑧𝐵) → (𝑥 < 𝑧𝑥 𝑧))
6361, 53, 56, 62syl3anc 1369 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 < 𝑧𝑥 𝑧))
6460, 63syld 47 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 𝑧))
65 breq1 5036 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 < 𝑧𝑦 < 𝑧))
6665biimpar 482 . . . . . . 7 ((𝑥 = 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧)
6766, 63syl5 34 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 = 𝑦𝑦 < 𝑧) → 𝑥 𝑧))
68 breq2 5037 . . . . . . . 8 (𝑦 = 𝑧 → (𝑥 < 𝑦𝑥 < 𝑧))
6968biimpac 483 . . . . . . 7 ((𝑥 < 𝑦𝑦 = 𝑧) → 𝑥 < 𝑧)
7069, 63syl5 34 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 = 𝑧) → 𝑥 𝑧))
7153, 33syldan 595 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑥 𝑥)
72 eqtr 2779 . . . . . . . 8 ((𝑥 = 𝑦𝑦 = 𝑧) → 𝑥 = 𝑧)
7372breq2d 5045 . . . . . . 7 ((𝑥 = 𝑦𝑦 = 𝑧) → (𝑥 𝑥𝑥 𝑧))
7471, 73syl5ibcom 248 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 = 𝑦𝑦 = 𝑧) → 𝑥 𝑧))
7564, 67, 70, 74ccased 1035 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (((𝑥 < 𝑦𝑥 = 𝑦) ∧ (𝑦 < 𝑧𝑦 = 𝑧)) → 𝑥 𝑧))
7655, 58, 75syl2and 611 . . . 4 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
7723, 24, 25, 33, 52, 76isposd 17624 . . 3 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → 𝐾 ∈ Poset)
7877ex 417 . 2 (𝐾𝑉 → (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) → 𝐾 ∈ Poset))
7922, 78impbid2 229 1 (𝐾𝑉 → (𝐾 ∈ Poset ↔ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  wo 845  w3a 1085   = wceq 1539  wcel 2112  wss 3859  cop 4529   class class class wbr 5033  {copab 5095   I cid 5430   Po wpo 5442  cres 5527  Rel wrel 5530  cfv 6336  Basecbs 16534  lecple 16623  Posetcpo 17609  ltcplt 17610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pr 5299
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-po 5444  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-res 5537  df-iota 6295  df-fun 6338  df-fv 6344  df-proset 17597  df-poset 17615  df-plt 17627
This theorem is referenced by:  tosso  17705
  Copyright terms: Public domain W3C validator