| Step | Hyp | Ref
| Expression |
| 1 | | pospo.s |
. . . . 5
⊢ < =
(lt‘𝐾) |
| 2 | 1 | pltirr 18380 |
. . . 4
⊢ ((𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵) → ¬ 𝑥 < 𝑥) |
| 3 | | pospo.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
| 4 | 3, 1 | plttr 18387 |
. . . 4
⊢ ((𝐾 ∈ Poset ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) |
| 5 | 2, 4 | ispod 5601 |
. . 3
⊢ (𝐾 ∈ Poset → < Po 𝐵) |
| 6 | | relres 6023 |
. . . . 5
⊢ Rel ( I
↾ 𝐵) |
| 7 | 6 | a1i 11 |
. . . 4
⊢ (𝐾 ∈ Poset → Rel ( I
↾ 𝐵)) |
| 8 | | opabresid 6068 |
. . . . . . . 8
⊢ ( I
↾ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)} |
| 9 | 8 | eqcomi 2746 |
. . . . . . 7
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)} = ( I ↾ 𝐵) |
| 10 | 9 | eleq2i 2833 |
. . . . . 6
⊢
(〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)} ↔ 〈𝑥, 𝑦〉 ∈ ( I ↾ 𝐵)) |
| 11 | | opabidw 5529 |
. . . . . 6
⊢
(〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)} ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)) |
| 12 | 10, 11 | bitr3i 277 |
. . . . 5
⊢
(〈𝑥, 𝑦〉 ∈ ( I ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)) |
| 13 | | pospo.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
| 14 | 3, 13 | posref 18364 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵) → 𝑥 ≤ 𝑥) |
| 15 | | df-br 5144 |
. . . . . . . 8
⊢ (𝑥 ≤ 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ≤ ) |
| 16 | | breq2 5147 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑥)) |
| 17 | 15, 16 | bitr3id 285 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (〈𝑥, 𝑦〉 ∈ ≤ ↔ 𝑥 ≤ 𝑥)) |
| 18 | 14, 17 | syl5ibrcom 247 |
. . . . . 6
⊢ ((𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵) → (𝑦 = 𝑥 → 〈𝑥, 𝑦〉 ∈ ≤ )) |
| 19 | 18 | expimpd 453 |
. . . . 5
⊢ (𝐾 ∈ Poset → ((𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥) → 〈𝑥, 𝑦〉 ∈ ≤ )) |
| 20 | 12, 19 | biimtrid 242 |
. . . 4
⊢ (𝐾 ∈ Poset →
(〈𝑥, 𝑦〉 ∈ ( I ↾ 𝐵) → 〈𝑥, 𝑦〉 ∈ ≤ )) |
| 21 | 7, 20 | relssdv 5798 |
. . 3
⊢ (𝐾 ∈ Poset → ( I ↾
𝐵) ⊆ ≤
) |
| 22 | 5, 21 | jca 511 |
. 2
⊢ (𝐾 ∈ Poset → ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) |
| 23 | | simpl 482 |
. . . 4
⊢ ((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) → 𝐾 ∈ 𝑉) |
| 24 | 3 | a1i 11 |
. . . 4
⊢ ((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) → 𝐵 = (Base‘𝐾)) |
| 25 | 13 | a1i 11 |
. . . 4
⊢ ((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) → ≤ =
(le‘𝐾)) |
| 26 | | equid 2011 |
. . . . . 6
⊢ 𝑥 = 𝑥 |
| 27 | | simpr 484 |
. . . . . . 7
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 28 | | resieq 6008 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑥( I ↾ 𝐵)𝑥 ↔ 𝑥 = 𝑥)) |
| 29 | 27, 27, 28 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵) → (𝑥( I ↾ 𝐵)𝑥 ↔ 𝑥 = 𝑥)) |
| 30 | 26, 29 | mpbiri 258 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵) → 𝑥( I ↾ 𝐵)𝑥) |
| 31 | | simplrr 778 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵) → ( I ↾ 𝐵) ⊆ ≤ ) |
| 32 | 31 | ssbrd 5186 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵) → (𝑥( I ↾ 𝐵)𝑥 → 𝑥 ≤ 𝑥)) |
| 33 | 30, 32 | mpd 15 |
. . . 4
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵) → 𝑥 ≤ 𝑥) |
| 34 | 3, 13, 1 | pleval2i 18381 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) |
| 35 | 34 | 3adant1 1131 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) |
| 36 | 3, 13, 1 | pleval2i 18381 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑦 ≤ 𝑥 → (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) |
| 37 | 36 | ancoms 458 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑦 ≤ 𝑥 → (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) |
| 38 | 37 | 3adant1 1131 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑦 ≤ 𝑥 → (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) |
| 39 | | simprl 771 |
. . . . . . . 8
⊢ ((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) → < Po 𝐵) |
| 40 | | po2nr 5606 |
. . . . . . . . 9
⊢ (( < Po 𝐵 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ¬ (𝑥 < 𝑦 ∧ 𝑦 < 𝑥)) |
| 41 | 40 | 3impb 1115 |
. . . . . . . 8
⊢ (( < Po 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ¬ (𝑥 < 𝑦 ∧ 𝑦 < 𝑥)) |
| 42 | 39, 41 | syl3an1 1164 |
. . . . . . 7
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ¬ (𝑥 < 𝑦 ∧ 𝑦 < 𝑥)) |
| 43 | 42 | pm2.21d 121 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑥) → 𝑥 = 𝑦)) |
| 44 | | simpl 482 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 ∧ 𝑦 < 𝑥) → 𝑥 = 𝑦) |
| 45 | 44 | a1i 11 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 = 𝑦 ∧ 𝑦 < 𝑥) → 𝑥 = 𝑦)) |
| 46 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑥 < 𝑦 ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) |
| 47 | 46 | equcomd 2018 |
. . . . . . 7
⊢ ((𝑥 < 𝑦 ∧ 𝑦 = 𝑥) → 𝑥 = 𝑦) |
| 48 | 47 | a1i 11 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 < 𝑦 ∧ 𝑦 = 𝑥) → 𝑥 = 𝑦)) |
| 49 | | simpl 482 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 ∧ 𝑦 = 𝑥) → 𝑥 = 𝑦) |
| 50 | 49 | a1i 11 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 = 𝑦 ∧ 𝑦 = 𝑥) → 𝑥 = 𝑦)) |
| 51 | 43, 45, 48, 50 | ccased 1039 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (((𝑥 < 𝑦 ∨ 𝑥 = 𝑦) ∧ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → 𝑥 = 𝑦)) |
| 52 | 35, 38, 51 | syl2and 608 |
. . . 4
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) |
| 53 | | simpr1 1195 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
| 54 | | simpr2 1196 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 55 | 53, 54, 34 | syl2anc 584 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 ≤ 𝑦 → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) |
| 56 | | simpr3 1197 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
| 57 | 3, 13, 1 | pleval2i 18381 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦 ≤ 𝑧 → (𝑦 < 𝑧 ∨ 𝑦 = 𝑧))) |
| 58 | 54, 56, 57 | syl2anc 584 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 ≤ 𝑧 → (𝑦 < 𝑧 ∨ 𝑦 = 𝑧))) |
| 59 | | potr 5605 |
. . . . . . . 8
⊢ (( < Po 𝐵 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) |
| 60 | 39, 59 | sylan 580 |
. . . . . . 7
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) |
| 61 | | simpll 767 |
. . . . . . . 8
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐾 ∈ 𝑉) |
| 62 | 13, 1 | pltle 18378 |
. . . . . . . 8
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥 < 𝑧 → 𝑥 ≤ 𝑧)) |
| 63 | 61, 53, 56, 62 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 < 𝑧 → 𝑥 ≤ 𝑧)) |
| 64 | 60, 63 | syld 47 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 ≤ 𝑧)) |
| 65 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 < 𝑧 ↔ 𝑦 < 𝑧)) |
| 66 | 65 | biimpar 477 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧) |
| 67 | 66, 63 | syl5 34 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 = 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 ≤ 𝑧)) |
| 68 | | breq2 5147 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝑥 < 𝑦 ↔ 𝑥 < 𝑧)) |
| 69 | 68 | biimpac 478 |
. . . . . . 7
⊢ ((𝑥 < 𝑦 ∧ 𝑦 = 𝑧) → 𝑥 < 𝑧) |
| 70 | 69, 63 | syl5 34 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 < 𝑦 ∧ 𝑦 = 𝑧) → 𝑥 ≤ 𝑧)) |
| 71 | 53, 33 | syldan 591 |
. . . . . . 7
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 ≤ 𝑥) |
| 72 | | eqtr 2760 |
. . . . . . . 8
⊢ ((𝑥 = 𝑦 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑧) |
| 73 | 72 | breq2d 5155 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 ∧ 𝑦 = 𝑧) → (𝑥 ≤ 𝑥 ↔ 𝑥 ≤ 𝑧)) |
| 74 | 71, 73 | syl5ibcom 245 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 = 𝑦 ∧ 𝑦 = 𝑧) → 𝑥 ≤ 𝑧)) |
| 75 | 64, 67, 70, 74 | ccased 1039 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 < 𝑦 ∨ 𝑥 = 𝑦) ∧ (𝑦 < 𝑧 ∨ 𝑦 = 𝑧)) → 𝑥 ≤ 𝑧)) |
| 76 | 55, 58, 75 | syl2and 608 |
. . . 4
⊢ (((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) |
| 77 | 23, 24, 25, 33, 52, 76 | isposd 18368 |
. . 3
⊢ ((𝐾 ∈ 𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ )) → 𝐾 ∈ Poset) |
| 78 | 77 | ex 412 |
. 2
⊢ (𝐾 ∈ 𝑉 → (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ ) → 𝐾 ∈ Poset)) |
| 79 | 22, 78 | impbid2 226 |
1
⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Poset ↔ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ ))) |