MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulge0 Structured version   Visualization version   GIF version

Theorem mulge0 11350
Description: The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
mulge0 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))

Proof of Theorem mulge0
StepHypRef Expression
1 0red 10836 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ∈ ℝ)
2 simpl 486 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
31, 2leloed 10975 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
4 simpr 488 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
51, 4leloed 10975 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
63, 5anbi12d 634 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) ↔ ((0 < 𝐴 ∨ 0 = 𝐴) ∧ (0 < 𝐵 ∨ 0 = 𝐵))))
7 0red 10836 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 ∈ ℝ)
8 simpll 767 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 𝐴 ∈ ℝ)
9 simplr 769 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ)
108, 9remulcld 10863 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → (𝐴 · 𝐵) ∈ ℝ)
11 mulgt0 10910 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
1211an4s 660 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
137, 10, 12ltled 10980 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 ≤ (𝐴 · 𝐵))
1413ex 416 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 · 𝐵)))
15 0re 10835 . . . . . . . . 9 0 ∈ ℝ
16 leid 10928 . . . . . . . . 9 (0 ∈ ℝ → 0 ≤ 0)
1715, 16ax-mp 5 . . . . . . . 8 0 ≤ 0
184recnd 10861 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
1918mul02d 11030 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 · 𝐵) = 0)
2017, 19breqtrrid 5091 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤ (0 · 𝐵))
21 oveq1 7220 . . . . . . . 8 (0 = 𝐴 → (0 · 𝐵) = (𝐴 · 𝐵))
2221breq2d 5065 . . . . . . 7 (0 = 𝐴 → (0 ≤ (0 · 𝐵) ↔ 0 ≤ (𝐴 · 𝐵)))
2320, 22syl5ibcom 248 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 = 𝐴 → 0 ≤ (𝐴 · 𝐵)))
2423adantrd 495 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 = 𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 · 𝐵)))
252recnd 10861 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ)
2625mul01d 11031 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 0) = 0)
2717, 26breqtrrid 5091 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤ (𝐴 · 0))
28 oveq2 7221 . . . . . . . 8 (0 = 𝐵 → (𝐴 · 0) = (𝐴 · 𝐵))
2928breq2d 5065 . . . . . . 7 (0 = 𝐵 → (0 ≤ (𝐴 · 0) ↔ 0 ≤ (𝐴 · 𝐵)))
3027, 29syl5ibcom 248 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 = 𝐵 → 0 ≤ (𝐴 · 𝐵)))
3130adantld 494 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 = 𝐵) → 0 ≤ (𝐴 · 𝐵)))
3230adantld 494 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 = 𝐴 ∧ 0 = 𝐵) → 0 ≤ (𝐴 · 𝐵)))
3314, 24, 31, 32ccased 1039 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((0 < 𝐴 ∨ 0 = 𝐴) ∧ (0 < 𝐵 ∨ 0 = 𝐵)) → 0 ≤ (𝐴 · 𝐵)))
346, 33sylbid 243 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵)))
3534imp 410 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
3635an4s 660 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 847   = wceq 1543  wcel 2110   class class class wbr 5053  (class class class)co 7213  cr 10728  0cc0 10729   · cmul 10734   < clt 10867  cle 10868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873
This theorem is referenced by:  mulge0i  11379  mulge0d  11409  mulge0b  11702  ge0mulcl  13049  expge0  13671  bernneq  13796  sqrtmul  14823  sqreulem  14923  amgm2  14933  nmoco  23635  iihalf1  23828  iimulcl  23834  mbfi1fseqlem1  24613  mbfi1fseqlem3  24615  mbfi1fseqlem5  24617  2lgslem1a1  26270  dchrisumlem3  26372  dchrvmasumlem2  26379  chpdifbndlem2  26435  cnlnadjlem7  30154  leopmuli  30214  reofld  31258  stoweidlem24  43240  hoidmvlelem1  43808
  Copyright terms: Public domain W3C validator