MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulge0 Structured version   Visualization version   GIF version

Theorem mulge0 11696
Description: The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
mulge0 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))

Proof of Theorem mulge0
StepHypRef Expression
1 0red 11177 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ∈ ℝ)
2 simpl 482 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
31, 2leloed 11317 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
4 simpr 484 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
51, 4leloed 11317 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
63, 5anbi12d 632 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) ↔ ((0 < 𝐴 ∨ 0 = 𝐴) ∧ (0 < 𝐵 ∨ 0 = 𝐵))))
7 0red 11177 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 ∈ ℝ)
8 simpll 766 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 𝐴 ∈ ℝ)
9 simplr 768 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ)
108, 9remulcld 11204 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → (𝐴 · 𝐵) ∈ ℝ)
11 mulgt0 11251 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
1211an4s 660 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
137, 10, 12ltled 11322 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 ≤ (𝐴 · 𝐵))
1413ex 412 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 · 𝐵)))
15 0re 11176 . . . . . . . . 9 0 ∈ ℝ
16 leid 11270 . . . . . . . . 9 (0 ∈ ℝ → 0 ≤ 0)
1715, 16ax-mp 5 . . . . . . . 8 0 ≤ 0
184recnd 11202 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
1918mul02d 11372 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 · 𝐵) = 0)
2017, 19breqtrrid 5145 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤ (0 · 𝐵))
21 oveq1 7394 . . . . . . . 8 (0 = 𝐴 → (0 · 𝐵) = (𝐴 · 𝐵))
2221breq2d 5119 . . . . . . 7 (0 = 𝐴 → (0 ≤ (0 · 𝐵) ↔ 0 ≤ (𝐴 · 𝐵)))
2320, 22syl5ibcom 245 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 = 𝐴 → 0 ≤ (𝐴 · 𝐵)))
2423adantrd 491 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 = 𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 · 𝐵)))
252recnd 11202 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ)
2625mul01d 11373 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 0) = 0)
2717, 26breqtrrid 5145 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤ (𝐴 · 0))
28 oveq2 7395 . . . . . . . 8 (0 = 𝐵 → (𝐴 · 0) = (𝐴 · 𝐵))
2928breq2d 5119 . . . . . . 7 (0 = 𝐵 → (0 ≤ (𝐴 · 0) ↔ 0 ≤ (𝐴 · 𝐵)))
3027, 29syl5ibcom 245 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 = 𝐵 → 0 ≤ (𝐴 · 𝐵)))
3130adantld 490 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 = 𝐵) → 0 ≤ (𝐴 · 𝐵)))
3230adantld 490 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 = 𝐴 ∧ 0 = 𝐵) → 0 ≤ (𝐴 · 𝐵)))
3314, 24, 31, 32ccased 1038 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((0 < 𝐴 ∨ 0 = 𝐴) ∧ (0 < 𝐵 ∨ 0 = 𝐵)) → 0 ≤ (𝐴 · 𝐵)))
346, 33sylbid 240 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵)))
3534imp 406 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
3635an4s 660 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5107  (class class class)co 7387  cr 11067  0cc0 11068   · cmul 11073   < clt 11208  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214
This theorem is referenced by:  mulge0i  11725  mulge0d  11755  mulge0b  12053  ge0mulcl  13422  expge0  14063  bernneq  14194  sqrtmul  15225  sqreulem  15326  amgm2  15336  nmoco  24625  iihalf1  24825  iimulcl  24833  mbfi1fseqlem1  25616  mbfi1fseqlem3  25618  mbfi1fseqlem5  25620  2lgslem1a1  27300  dchrisumlem3  27402  dchrvmasumlem2  27409  chpdifbndlem2  27465  cnlnadjlem7  32002  leopmuli  32062  reofld  33315  stoweidlem24  46022  hoidmvlelem1  46593
  Copyright terms: Public domain W3C validator