MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulge0 Structured version   Visualization version   GIF version

Theorem mulge0 11423
Description: The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
mulge0 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))

Proof of Theorem mulge0
StepHypRef Expression
1 0red 10909 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ∈ ℝ)
2 simpl 482 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
31, 2leloed 11048 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
4 simpr 484 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
51, 4leloed 11048 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
63, 5anbi12d 630 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) ↔ ((0 < 𝐴 ∨ 0 = 𝐴) ∧ (0 < 𝐵 ∨ 0 = 𝐵))))
7 0red 10909 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 ∈ ℝ)
8 simpll 763 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 𝐴 ∈ ℝ)
9 simplr 765 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ)
108, 9remulcld 10936 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → (𝐴 · 𝐵) ∈ ℝ)
11 mulgt0 10983 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
1211an4s 656 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
137, 10, 12ltled 11053 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 ≤ (𝐴 · 𝐵))
1413ex 412 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 · 𝐵)))
15 0re 10908 . . . . . . . . 9 0 ∈ ℝ
16 leid 11001 . . . . . . . . 9 (0 ∈ ℝ → 0 ≤ 0)
1715, 16ax-mp 5 . . . . . . . 8 0 ≤ 0
184recnd 10934 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
1918mul02d 11103 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 · 𝐵) = 0)
2017, 19breqtrrid 5108 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤ (0 · 𝐵))
21 oveq1 7262 . . . . . . . 8 (0 = 𝐴 → (0 · 𝐵) = (𝐴 · 𝐵))
2221breq2d 5082 . . . . . . 7 (0 = 𝐴 → (0 ≤ (0 · 𝐵) ↔ 0 ≤ (𝐴 · 𝐵)))
2320, 22syl5ibcom 244 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 = 𝐴 → 0 ≤ (𝐴 · 𝐵)))
2423adantrd 491 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 = 𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 · 𝐵)))
252recnd 10934 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ)
2625mul01d 11104 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 0) = 0)
2717, 26breqtrrid 5108 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤ (𝐴 · 0))
28 oveq2 7263 . . . . . . . 8 (0 = 𝐵 → (𝐴 · 0) = (𝐴 · 𝐵))
2928breq2d 5082 . . . . . . 7 (0 = 𝐵 → (0 ≤ (𝐴 · 0) ↔ 0 ≤ (𝐴 · 𝐵)))
3027, 29syl5ibcom 244 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 = 𝐵 → 0 ≤ (𝐴 · 𝐵)))
3130adantld 490 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 = 𝐵) → 0 ≤ (𝐴 · 𝐵)))
3230adantld 490 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 = 𝐴 ∧ 0 = 𝐵) → 0 ≤ (𝐴 · 𝐵)))
3314, 24, 31, 32ccased 1035 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((0 < 𝐴 ∨ 0 = 𝐴) ∧ (0 < 𝐵 ∨ 0 = 𝐵)) → 0 ≤ (𝐴 · 𝐵)))
346, 33sylbid 239 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵)))
3534imp 406 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
3635an4s 656 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  cr 10801  0cc0 10802   · cmul 10807   < clt 10940  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946
This theorem is referenced by:  mulge0i  11452  mulge0d  11482  mulge0b  11775  ge0mulcl  13122  expge0  13747  bernneq  13872  sqrtmul  14899  sqreulem  14999  amgm2  15009  nmoco  23807  iihalf1  24000  iimulcl  24006  mbfi1fseqlem1  24785  mbfi1fseqlem3  24787  mbfi1fseqlem5  24789  2lgslem1a1  26442  dchrisumlem3  26544  dchrvmasumlem2  26551  chpdifbndlem2  26607  cnlnadjlem7  30336  leopmuli  30396  reofld  31446  stoweidlem24  43455  hoidmvlelem1  44023
  Copyright terms: Public domain W3C validator