Proof of Theorem mulge0
| Step | Hyp | Ref
| Expression |
| 1 | | 0red 11264 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ∈
ℝ) |
| 2 | | simpl 482 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈
ℝ) |
| 3 | 1, 2 | leloed 11404 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤
𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴))) |
| 4 | | simpr 484 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈
ℝ) |
| 5 | 1, 4 | leloed 11404 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤
𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵))) |
| 6 | 3, 5 | anbi12d 632 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤
𝐴 ∧ 0 ≤ 𝐵) ↔ ((0 < 𝐴 ∨ 0 = 𝐴) ∧ (0 < 𝐵 ∨ 0 = 𝐵)))) |
| 7 | | 0red 11264 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 <
𝐴 ∧ 0 < 𝐵)) → 0 ∈
ℝ) |
| 8 | | simpll 767 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 <
𝐴 ∧ 0 < 𝐵)) → 𝐴 ∈ ℝ) |
| 9 | | simplr 769 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 <
𝐴 ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ) |
| 10 | 8, 9 | remulcld 11291 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 <
𝐴 ∧ 0 < 𝐵)) → (𝐴 · 𝐵) ∈ ℝ) |
| 11 | | mulgt0 11338 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵)) |
| 12 | 11 | an4s 660 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 <
𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵)) |
| 13 | 7, 10, 12 | ltled 11409 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 <
𝐴 ∧ 0 < 𝐵)) → 0 ≤ (𝐴 · 𝐵)) |
| 14 | 13 | ex 412 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <
𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 · 𝐵))) |
| 15 | | 0re 11263 |
. . . . . . . . 9
⊢ 0 ∈
ℝ |
| 16 | | leid 11357 |
. . . . . . . . 9
⊢ (0 ∈
ℝ → 0 ≤ 0) |
| 17 | 15, 16 | ax-mp 5 |
. . . . . . . 8
⊢ 0 ≤
0 |
| 18 | 4 | recnd 11289 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈
ℂ) |
| 19 | 18 | mul02d 11459 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0
· 𝐵) =
0) |
| 20 | 17, 19 | breqtrrid 5181 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤
(0 · 𝐵)) |
| 21 | | oveq1 7438 |
. . . . . . . 8
⊢ (0 =
𝐴 → (0 · 𝐵) = (𝐴 · 𝐵)) |
| 22 | 21 | breq2d 5155 |
. . . . . . 7
⊢ (0 =
𝐴 → (0 ≤ (0
· 𝐵) ↔ 0 ≤
(𝐴 · 𝐵))) |
| 23 | 20, 22 | syl5ibcom 245 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 =
𝐴 → 0 ≤ (𝐴 · 𝐵))) |
| 24 | 23 | adantrd 491 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 =
𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 · 𝐵))) |
| 25 | 2 | recnd 11289 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈
ℂ) |
| 26 | 25 | mul01d 11460 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 0) =
0) |
| 27 | 17, 26 | breqtrrid 5181 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤
(𝐴 ·
0)) |
| 28 | | oveq2 7439 |
. . . . . . . 8
⊢ (0 =
𝐵 → (𝐴 · 0) = (𝐴 · 𝐵)) |
| 29 | 28 | breq2d 5155 |
. . . . . . 7
⊢ (0 =
𝐵 → (0 ≤ (𝐴 · 0) ↔ 0 ≤
(𝐴 · 𝐵))) |
| 30 | 27, 29 | syl5ibcom 245 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 =
𝐵 → 0 ≤ (𝐴 · 𝐵))) |
| 31 | 30 | adantld 490 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <
𝐴 ∧ 0 = 𝐵) → 0 ≤ (𝐴 · 𝐵))) |
| 32 | 30 | adantld 490 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 =
𝐴 ∧ 0 = 𝐵) → 0 ≤ (𝐴 · 𝐵))) |
| 33 | 14, 24, 31, 32 | ccased 1039 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((0
< 𝐴 ∨ 0 = 𝐴) ∧ (0 < 𝐵 ∨ 0 = 𝐵)) → 0 ≤ (𝐴 · 𝐵))) |
| 34 | 6, 33 | sylbid 240 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤
𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵))) |
| 35 | 34 | imp 406 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)) |
| 36 | 35 | an4s 660 |
1
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)) |