MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zmulcl Structured version   Visualization version   GIF version

Theorem zmulcl 12025
Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.)
Assertion
Ref Expression
zmulcl ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)

Proof of Theorem zmulcl
StepHypRef Expression
1 elznn0 11990 . 2 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)))
2 elznn0 11990 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
3 nn0mulcl 11927 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0)
43orcd 869 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))
54a1i 11 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))
6 remulcl 10616 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 · 𝑁) ∈ ℝ)
75, 6jctild 528 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))))
8 nn0mulcl 11927 . . . . . . . . 9 ((-𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (-𝑀 · 𝑁) ∈ ℕ0)
9 recn 10621 . . . . . . . . . . 11 (𝑀 ∈ ℝ → 𝑀 ∈ ℂ)
10 recn 10621 . . . . . . . . . . 11 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
11 mulneg1 11070 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁))
129, 10, 11syl2an 597 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁))
1312eleq1d 2897 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 · 𝑁) ∈ ℕ0 ↔ -(𝑀 · 𝑁) ∈ ℕ0))
148, 13syl5ib 246 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → -(𝑀 · 𝑁) ∈ ℕ0))
15 olc 864 . . . . . . . 8 (-(𝑀 · 𝑁) ∈ ℕ0 → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))
1614, 15syl6 35 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))
1716, 6jctild 528 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))))
18 nn0mulcl 11927 . . . . . . . . 9 ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (𝑀 · -𝑁) ∈ ℕ0)
19 mulneg2 11071 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 · -𝑁) = -(𝑀 · 𝑁))
209, 10, 19syl2an 597 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 · -𝑁) = -(𝑀 · 𝑁))
2120eleq1d 2897 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 · -𝑁) ∈ ℕ0 ↔ -(𝑀 · 𝑁) ∈ ℕ0))
2218, 21syl5ib 246 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → -(𝑀 · 𝑁) ∈ ℕ0))
2322, 15syl6 35 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))
2423, 6jctild 528 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))))
25 nn0mulcl 11927 . . . . . . . . 9 ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (-𝑀 · -𝑁) ∈ ℕ0)
26 mul2neg 11073 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑀 · -𝑁) = (𝑀 · 𝑁))
279, 10, 26syl2an 597 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (-𝑀 · -𝑁) = (𝑀 · 𝑁))
2827eleq1d 2897 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 · -𝑁) ∈ ℕ0 ↔ (𝑀 · 𝑁) ∈ ℕ0))
2925, 28syl5ib 246 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0))
30 orc 863 . . . . . . . 8 ((𝑀 · 𝑁) ∈ ℕ0 → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))
3129, 30syl6 35 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))
3231, 6jctild 528 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))))
337, 17, 24, 32ccased 1033 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))))
34 elznn0 11990 . . . . 5 ((𝑀 · 𝑁) ∈ ℤ ↔ ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))
3533, 34syl6ibr 254 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → (𝑀 · 𝑁) ∈ ℤ))
3635imp 409 . . 3 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ ((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) → (𝑀 · 𝑁) ∈ ℤ)
3736an4s 658 . 2 (((𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)) ∧ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) → (𝑀 · 𝑁) ∈ ℤ)
381, 2, 37syl2anb 599 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  (class class class)co 7150  cc 10529  cr 10530   · cmul 10536  -cneg 10865  0cn0 11891  cz 11975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-ltxr 10674  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976
This theorem is referenced by:  zdivmul  12048  msqznn  12058  zmulcld  12087  uz2mulcl  12320  qaddcl  12358  qmulcl  12360  qreccl  12362  fzctr  13013  flmulnn0  13191  zexpcl  13438  iexpcyc  13563  zesq  13581  cshweqrep  14177  fprodzcl  15302  zrisefaccl  15368  zfallfaccl  15369  dvdsmul1  15625  dvdsmul2  15626  muldvds1  15628  muldvds2  15629  dvdscmul  15630  dvdsmulc  15631  dvdscmulr  15632  dvdsmulcr  15633  dvds2ln  15636  dvdstr  15640  dvdsmultr1  15641  dvdsmultr2  15643  3dvdsdec  15675  3dvds2dec  15676  oexpneg  15688  mulsucdiv2z  15696  divalglem0  15738  divalglem2  15740  divalglem4  15741  divalglem8  15745  divalgb  15749  divalgmod  15751  ndvdsi  15757  gcdaddmlem  15866  absmulgcd  15891  gcdmultipleOLD  15894  gcdmultiplezOLD  15895  dvdsmulgcd  15899  rpmulgcd  15900  lcmcllem  15934  rpmul  15997  cncongr1  16005  cncongr2  16006  eulerthlem2  16113  modprminv  16130  modprminveq  16131  modprm0  16136  pythagtriplem4  16150  pcpremul  16174  pcmul  16182  gzmulcl  16268  pgpfac1lem2  19191  zsubrg  20592  dvdsrzring  20624  mulgrhm  20639  domnchr  20673  znfld  20701  znunit  20704  mbfi1fseqlem5  24314  dvexp3  24569  basellem2  25653  basellem5  25656  dvdsflf1o  25758  chtub  25782  bposlem1  25854  bposlem5  25858  bposlem6  25859  lgslem3  25869  lgsval4a  25889  lgsneg  25891  lgsdir2  25900  lgsdchr  25925  lgseisenlem1  25945  lgseisenlem2  25946  lgseisenlem3  25947  lgsquadlem1  25950  lgsquad2lem2  25955  2lgsoddprmlem2  25979  chebbnd1lem1  26039  chebbnd1lem3  26041  knoppndvlem2  33847  fzmul  35010  mzpclall  39317  mzpindd  39336  acongrep  39570  acongeq  39573  jm2.18  39578  jm2.21  39584  jm2.26a  39590  jm2.26  39592  jm2.16nn0  39594  jm2.27a  39595  jm2.27c  39597  jm3.1lem3  39609  fourierswlem  42509  oexpnegALTV  43836  oexpnegnz  43837  tgblthelfgott  43974  2zrngmmgm  44211  zlmodzxzequa  44545  zlmodzxzequap  44548
  Copyright terms: Public domain W3C validator