![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zmulcl | Structured version Visualization version GIF version |
Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
Ref | Expression |
---|---|
zmulcl | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0 12523 | . 2 ⊢ (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))) | |
2 | elznn0 12523 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | |
3 | nn0mulcl 12458 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0) | |
4 | 3 | orcd 871 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)) |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
6 | remulcl 11145 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 · 𝑁) ∈ ℝ) | |
7 | 5, 6 | jctild 526 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
8 | nn0mulcl 12458 | . . . . . . . . 9 ⊢ ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (-𝑀 · 𝑁) ∈ ℕ0) | |
9 | recn 11150 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℝ → 𝑀 ∈ ℂ) | |
10 | recn 11150 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℝ → 𝑁 ∈ ℂ) | |
11 | mulneg1 11600 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁)) | |
12 | 9, 10, 11 | syl2an 596 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁)) |
13 | 12 | eleq1d 2817 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 · 𝑁) ∈ ℕ0 ↔ -(𝑀 · 𝑁) ∈ ℕ0)) |
14 | 8, 13 | imbitrid 243 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → -(𝑀 · 𝑁) ∈ ℕ0)) |
15 | olc 866 | . . . . . . . 8 ⊢ (-(𝑀 · 𝑁) ∈ ℕ0 → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)) | |
16 | 14, 15 | syl6 35 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
17 | 16, 6 | jctild 526 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
18 | nn0mulcl 12458 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (𝑀 · -𝑁) ∈ ℕ0) | |
19 | mulneg2 11601 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 · -𝑁) = -(𝑀 · 𝑁)) | |
20 | 9, 10, 19 | syl2an 596 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 · -𝑁) = -(𝑀 · 𝑁)) |
21 | 20 | eleq1d 2817 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 · -𝑁) ∈ ℕ0 ↔ -(𝑀 · 𝑁) ∈ ℕ0)) |
22 | 18, 21 | imbitrid 243 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → -(𝑀 · 𝑁) ∈ ℕ0)) |
23 | 22, 15 | syl6 35 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
24 | 23, 6 | jctild 526 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
25 | nn0mulcl 12458 | . . . . . . . . 9 ⊢ ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (-𝑀 · -𝑁) ∈ ℕ0) | |
26 | mul2neg 11603 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑀 · -𝑁) = (𝑀 · 𝑁)) | |
27 | 9, 10, 26 | syl2an 596 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (-𝑀 · -𝑁) = (𝑀 · 𝑁)) |
28 | 27 | eleq1d 2817 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 · -𝑁) ∈ ℕ0 ↔ (𝑀 · 𝑁) ∈ ℕ0)) |
29 | 25, 28 | imbitrid 243 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0)) |
30 | orc 865 | . . . . . . . 8 ⊢ ((𝑀 · 𝑁) ∈ ℕ0 → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)) | |
31 | 29, 30 | syl6 35 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
32 | 31, 6 | jctild 526 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
33 | 7, 17, 24, 32 | ccased 1037 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
34 | elznn0 12523 | . . . . 5 ⊢ ((𝑀 · 𝑁) ∈ ℤ ↔ ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) | |
35 | 33, 34 | syl6ibr 251 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → (𝑀 · 𝑁) ∈ ℤ)) |
36 | 35 | imp 407 | . . 3 ⊢ (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ ((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) → (𝑀 · 𝑁) ∈ ℤ) |
37 | 36 | an4s 658 | . 2 ⊢ (((𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)) ∧ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) → (𝑀 · 𝑁) ∈ ℤ) |
38 | 1, 2, 37 | syl2anb 598 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 (class class class)co 7362 ℂcc 11058 ℝcr 11059 · cmul 11065 -cneg 11395 ℕ0cn0 12422 ℤcz 12508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-resscn 11117 ax-1cn 11118 ax-icn 11119 ax-addcl 11120 ax-addrcl 11121 ax-mulcl 11122 ax-mulrcl 11123 ax-mulcom 11124 ax-addass 11125 ax-mulass 11126 ax-distr 11127 ax-i2m1 11128 ax-1ne0 11129 ax-1rid 11130 ax-rnegex 11131 ax-rrecex 11132 ax-cnre 11133 ax-pre-lttri 11134 ax-pre-lttrn 11135 ax-pre-ltadd 11136 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3352 df-rab 3406 df-v 3448 df-sbc 3743 df-csb 3859 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-pss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-pnf 11200 df-mnf 11201 df-ltxr 11203 df-sub 11396 df-neg 11397 df-nn 12163 df-n0 12423 df-z 12509 |
This theorem is referenced by: zdivmul 12584 msqznn 12594 zmulcld 12622 uz2mulcl 12860 qaddcl 12899 qmulcl 12901 qreccl 12903 fzctr 13563 flmulnn0 13742 zexpcl 13992 iexpcyc 14121 zesq 14139 cshweqrep 14721 fprodzcl 15848 zrisefaccl 15914 zfallfaccl 15915 dvdsmul1 16171 dvdsmul2 16172 muldvds1 16174 muldvds2 16175 dvdscmul 16176 dvdsmulc 16177 dvdscmulr 16178 dvdsmulcr 16179 dvds2ln 16182 dvdstr 16187 dvdsmultr1 16189 dvdsmultr2 16191 3dvdsdec 16225 3dvds2dec 16226 oexpneg 16238 mulsucdiv2z 16246 divalglem0 16286 divalglem2 16288 divalglem4 16289 divalglem8 16293 divalgb 16297 divalgmod 16299 ndvdsi 16305 gcdaddmlem 16415 absmulgcd 16441 dvdsmulgcd 16447 rpmulgcd 16448 lcmcllem 16483 rpmul 16546 cncongr1 16554 cncongr2 16555 eulerthlem2 16665 modprminv 16682 modprminveq 16683 modprm0 16688 pythagtriplem4 16702 pcpremul 16726 pcmul 16734 gzmulcl 16821 pgpfac1lem2 19868 zsubrg 20887 dvdsrzring 20919 mulgrhm 20935 domnchr 20972 znfld 21004 znunit 21007 mbfi1fseqlem5 25121 dvexp3 25379 basellem2 26468 basellem5 26471 dvdsflf1o 26573 chtub 26597 bposlem1 26669 bposlem5 26673 bposlem6 26674 lgslem3 26684 lgsval4a 26704 lgsneg 26706 lgsdir2 26715 lgsdchr 26740 lgseisenlem1 26760 lgseisenlem2 26761 lgseisenlem3 26762 lgsquadlem1 26765 lgsquad2lem2 26770 2lgsoddprmlem2 26794 chebbnd1lem1 26854 chebbnd1lem3 26856 knoppndvlem2 35052 fzmul 36273 mzpclall 41108 mzpindd 41127 acongrep 41362 acongeq 41365 jm2.18 41370 jm2.21 41376 jm2.26a 41382 jm2.26 41384 jm2.16nn0 41386 jm2.27a 41387 jm2.27c 41389 jm3.1lem3 41401 fourierswlem 44591 oexpnegALTV 45989 oexpnegnz 45990 tgblthelfgott 46127 2zrngmmgm 46364 zlmodzxzequa 46697 zlmodzxzequap 46700 |
Copyright terms: Public domain | W3C validator |