| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zmulcl | Structured version Visualization version GIF version | ||
| Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
| Ref | Expression |
|---|---|
| zmulcl | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0 12520 | . 2 ⊢ (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))) | |
| 2 | elznn0 12520 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | |
| 3 | nn0mulcl 12454 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0) | |
| 4 | 3 | orcd 873 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)) |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
| 6 | remulcl 11129 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 · 𝑁) ∈ ℝ) | |
| 7 | 5, 6 | jctild 525 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
| 8 | nn0mulcl 12454 | . . . . . . . . 9 ⊢ ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (-𝑀 · 𝑁) ∈ ℕ0) | |
| 9 | recn 11134 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℝ → 𝑀 ∈ ℂ) | |
| 10 | recn 11134 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℝ → 𝑁 ∈ ℂ) | |
| 11 | mulneg1 11590 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁)) | |
| 12 | 9, 10, 11 | syl2an 596 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁)) |
| 13 | 12 | eleq1d 2813 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 · 𝑁) ∈ ℕ0 ↔ -(𝑀 · 𝑁) ∈ ℕ0)) |
| 14 | 8, 13 | imbitrid 244 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → -(𝑀 · 𝑁) ∈ ℕ0)) |
| 15 | olc 868 | . . . . . . . 8 ⊢ (-(𝑀 · 𝑁) ∈ ℕ0 → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)) | |
| 16 | 14, 15 | syl6 35 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
| 17 | 16, 6 | jctild 525 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
| 18 | nn0mulcl 12454 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (𝑀 · -𝑁) ∈ ℕ0) | |
| 19 | mulneg2 11591 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 · -𝑁) = -(𝑀 · 𝑁)) | |
| 20 | 9, 10, 19 | syl2an 596 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 · -𝑁) = -(𝑀 · 𝑁)) |
| 21 | 20 | eleq1d 2813 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 · -𝑁) ∈ ℕ0 ↔ -(𝑀 · 𝑁) ∈ ℕ0)) |
| 22 | 18, 21 | imbitrid 244 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → -(𝑀 · 𝑁) ∈ ℕ0)) |
| 23 | 22, 15 | syl6 35 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
| 24 | 23, 6 | jctild 525 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
| 25 | nn0mulcl 12454 | . . . . . . . . 9 ⊢ ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (-𝑀 · -𝑁) ∈ ℕ0) | |
| 26 | mul2neg 11593 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑀 · -𝑁) = (𝑀 · 𝑁)) | |
| 27 | 9, 10, 26 | syl2an 596 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (-𝑀 · -𝑁) = (𝑀 · 𝑁)) |
| 28 | 27 | eleq1d 2813 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 · -𝑁) ∈ ℕ0 ↔ (𝑀 · 𝑁) ∈ ℕ0)) |
| 29 | 25, 28 | imbitrid 244 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0)) |
| 30 | orc 867 | . . . . . . . 8 ⊢ ((𝑀 · 𝑁) ∈ ℕ0 → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)) | |
| 31 | 29, 30 | syl6 35 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
| 32 | 31, 6 | jctild 525 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
| 33 | 7, 17, 24, 32 | ccased 1038 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
| 34 | elznn0 12520 | . . . . 5 ⊢ ((𝑀 · 𝑁) ∈ ℤ ↔ ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) | |
| 35 | 33, 34 | imbitrrdi 252 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → (𝑀 · 𝑁) ∈ ℤ)) |
| 36 | 35 | imp 406 | . . 3 ⊢ (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ ((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) → (𝑀 · 𝑁) ∈ ℤ) |
| 37 | 36 | an4s 660 | . 2 ⊢ (((𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)) ∧ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) → (𝑀 · 𝑁) ∈ ℤ) |
| 38 | 1, 2, 37 | syl2anb 598 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 ℝcr 11043 · cmul 11049 -cneg 11382 ℕ0cn0 12418 ℤcz 12505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 |
| This theorem is referenced by: zdivmul 12582 msqznn 12592 zmulcld 12620 uz2mulcl 12861 qaddcl 12900 qmulcl 12902 qreccl 12904 fzctr 13577 flmulnn0 13765 zexpcl 14017 iexpcyc 14148 zesq 14167 cshweqrep 14762 fprodzcl 15896 zrisefaccl 15962 zfallfaccl 15963 addmulmodb 16211 dvdsmul1 16223 dvdsmul2 16224 muldvds1 16226 muldvds2 16227 dvdscmul 16228 dvdsmulc 16229 dvdscmulr 16230 dvdsmulcr 16231 dvds2ln 16235 dvdstr 16240 dvdsmultr1 16242 dvdsmultr2 16244 3dvdsdec 16278 3dvds2dec 16279 oexpneg 16291 mulsucdiv2z 16299 divalglem0 16339 divalglem2 16341 divalglem4 16342 divalglem8 16346 divalgb 16350 divalgmod 16352 ndvdsi 16358 gcdaddmlem 16470 absmulgcd 16495 dvdsmulgcd 16502 rpmulgcd 16503 lcmcllem 16542 rpmul 16605 cncongr1 16613 cncongr2 16614 eulerthlem2 16728 modprminv 16746 modprminveq 16747 modprm0 16752 pythagtriplem4 16766 pcpremul 16790 pcmul 16798 gzmulcl 16885 pgpfac1lem2 19983 zsubrg 21313 dvdsrzring 21347 mulgrhm 21363 pzriprnglem5 21371 pzriprng1ALT 21382 domnchr 21418 znfld 21446 znunit 21449 mbfi1fseqlem5 25596 dvexp3 25858 basellem2 26968 basellem5 26971 dvdsflf1o 27073 chtub 27099 bposlem1 27171 bposlem5 27175 bposlem6 27176 lgslem3 27186 lgsval4a 27206 lgsneg 27208 lgsdir2 27217 lgsdchr 27242 lgseisenlem1 27262 lgseisenlem2 27263 lgseisenlem3 27264 lgsquadlem1 27267 lgsquad2lem2 27272 2lgsoddprmlem2 27296 chebbnd1lem1 27356 chebbnd1lem3 27358 knoppndvlem2 36474 fzmul 37708 mzpclall 42688 mzpindd 42707 acongrep 42942 acongeq 42945 jm2.18 42950 jm2.21 42956 jm2.26a 42962 jm2.26 42964 jm2.16nn0 42966 jm2.27a 42967 jm2.27c 42969 jm3.1lem3 42981 fourierswlem 46201 oexpnegALTV 47651 oexpnegnz 47652 tgblthelfgott 47789 2zrngmmgm 48213 zlmodzxzequa 48458 zlmodzxzequap 48461 |
| Copyright terms: Public domain | W3C validator |