![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zmulcl | Structured version Visualization version GIF version |
Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
Ref | Expression |
---|---|
zmulcl | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0 12514 | . 2 ⊢ (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))) | |
2 | elznn0 12514 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | |
3 | nn0mulcl 12449 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0) | |
4 | 3 | orcd 871 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)) |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
6 | remulcl 11136 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 · 𝑁) ∈ ℝ) | |
7 | 5, 6 | jctild 526 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
8 | nn0mulcl 12449 | . . . . . . . . 9 ⊢ ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (-𝑀 · 𝑁) ∈ ℕ0) | |
9 | recn 11141 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℝ → 𝑀 ∈ ℂ) | |
10 | recn 11141 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℝ → 𝑁 ∈ ℂ) | |
11 | mulneg1 11591 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁)) | |
12 | 9, 10, 11 | syl2an 596 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁)) |
13 | 12 | eleq1d 2822 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 · 𝑁) ∈ ℕ0 ↔ -(𝑀 · 𝑁) ∈ ℕ0)) |
14 | 8, 13 | imbitrid 243 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → -(𝑀 · 𝑁) ∈ ℕ0)) |
15 | olc 866 | . . . . . . . 8 ⊢ (-(𝑀 · 𝑁) ∈ ℕ0 → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)) | |
16 | 14, 15 | syl6 35 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
17 | 16, 6 | jctild 526 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
18 | nn0mulcl 12449 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (𝑀 · -𝑁) ∈ ℕ0) | |
19 | mulneg2 11592 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 · -𝑁) = -(𝑀 · 𝑁)) | |
20 | 9, 10, 19 | syl2an 596 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 · -𝑁) = -(𝑀 · 𝑁)) |
21 | 20 | eleq1d 2822 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 · -𝑁) ∈ ℕ0 ↔ -(𝑀 · 𝑁) ∈ ℕ0)) |
22 | 18, 21 | imbitrid 243 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → -(𝑀 · 𝑁) ∈ ℕ0)) |
23 | 22, 15 | syl6 35 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
24 | 23, 6 | jctild 526 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
25 | nn0mulcl 12449 | . . . . . . . . 9 ⊢ ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (-𝑀 · -𝑁) ∈ ℕ0) | |
26 | mul2neg 11594 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑀 · -𝑁) = (𝑀 · 𝑁)) | |
27 | 9, 10, 26 | syl2an 596 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (-𝑀 · -𝑁) = (𝑀 · 𝑁)) |
28 | 27 | eleq1d 2822 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 · -𝑁) ∈ ℕ0 ↔ (𝑀 · 𝑁) ∈ ℕ0)) |
29 | 25, 28 | imbitrid 243 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0)) |
30 | orc 865 | . . . . . . . 8 ⊢ ((𝑀 · 𝑁) ∈ ℕ0 → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)) | |
31 | 29, 30 | syl6 35 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
32 | 31, 6 | jctild 526 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
33 | 7, 17, 24, 32 | ccased 1037 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
34 | elznn0 12514 | . . . . 5 ⊢ ((𝑀 · 𝑁) ∈ ℤ ↔ ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) | |
35 | 33, 34 | syl6ibr 251 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → (𝑀 · 𝑁) ∈ ℤ)) |
36 | 35 | imp 407 | . . 3 ⊢ (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ ((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) → (𝑀 · 𝑁) ∈ ℤ) |
37 | 36 | an4s 658 | . 2 ⊢ (((𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)) ∧ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) → (𝑀 · 𝑁) ∈ ℤ) |
38 | 1, 2, 37 | syl2anb 598 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 (class class class)co 7357 ℂcc 11049 ℝcr 11050 · cmul 11056 -cneg 11386 ℕ0cn0 12413 ℤcz 12499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-ltxr 11194 df-sub 11387 df-neg 11388 df-nn 12154 df-n0 12414 df-z 12500 |
This theorem is referenced by: zdivmul 12575 msqznn 12585 zmulcld 12613 uz2mulcl 12851 qaddcl 12890 qmulcl 12892 qreccl 12894 fzctr 13553 flmulnn0 13732 zexpcl 13982 iexpcyc 14111 zesq 14129 cshweqrep 14709 fprodzcl 15837 zrisefaccl 15903 zfallfaccl 15904 dvdsmul1 16160 dvdsmul2 16161 muldvds1 16163 muldvds2 16164 dvdscmul 16165 dvdsmulc 16166 dvdscmulr 16167 dvdsmulcr 16168 dvds2ln 16171 dvdstr 16176 dvdsmultr1 16178 dvdsmultr2 16180 3dvdsdec 16214 3dvds2dec 16215 oexpneg 16227 mulsucdiv2z 16235 divalglem0 16275 divalglem2 16277 divalglem4 16278 divalglem8 16282 divalgb 16286 divalgmod 16288 ndvdsi 16294 gcdaddmlem 16404 absmulgcd 16430 dvdsmulgcd 16436 rpmulgcd 16437 lcmcllem 16472 rpmul 16535 cncongr1 16543 cncongr2 16544 eulerthlem2 16654 modprminv 16671 modprminveq 16672 modprm0 16677 pythagtriplem4 16691 pcpremul 16715 pcmul 16723 gzmulcl 16810 pgpfac1lem2 19854 zsubrg 20850 dvdsrzring 20882 mulgrhm 20898 domnchr 20935 znfld 20967 znunit 20970 mbfi1fseqlem5 25084 dvexp3 25342 basellem2 26431 basellem5 26434 dvdsflf1o 26536 chtub 26560 bposlem1 26632 bposlem5 26636 bposlem6 26637 lgslem3 26647 lgsval4a 26667 lgsneg 26669 lgsdir2 26678 lgsdchr 26703 lgseisenlem1 26723 lgseisenlem2 26724 lgseisenlem3 26725 lgsquadlem1 26728 lgsquad2lem2 26733 2lgsoddprmlem2 26757 chebbnd1lem1 26817 chebbnd1lem3 26819 knoppndvlem2 34976 fzmul 36200 mzpclall 41036 mzpindd 41055 acongrep 41290 acongeq 41293 jm2.18 41298 jm2.21 41304 jm2.26a 41310 jm2.26 41312 jm2.16nn0 41314 jm2.27a 41315 jm2.27c 41317 jm3.1lem3 41329 fourierswlem 44461 oexpnegALTV 45859 oexpnegnz 45860 tgblthelfgott 45997 2zrngmmgm 46234 zlmodzxzequa 46567 zlmodzxzequap 46570 |
Copyright terms: Public domain | W3C validator |