| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zmulcl | Structured version Visualization version GIF version | ||
| Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
| Ref | Expression |
|---|---|
| zmulcl | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0 12478 | . 2 ⊢ (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))) | |
| 2 | elznn0 12478 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | |
| 3 | nn0mulcl 12412 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0) | |
| 4 | 3 | orcd 873 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)) |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
| 6 | remulcl 11086 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 · 𝑁) ∈ ℝ) | |
| 7 | 5, 6 | jctild 525 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
| 8 | nn0mulcl 12412 | . . . . . . . . 9 ⊢ ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (-𝑀 · 𝑁) ∈ ℕ0) | |
| 9 | recn 11091 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℝ → 𝑀 ∈ ℂ) | |
| 10 | recn 11091 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℝ → 𝑁 ∈ ℂ) | |
| 11 | mulneg1 11548 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁)) | |
| 12 | 9, 10, 11 | syl2an 596 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁)) |
| 13 | 12 | eleq1d 2816 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 · 𝑁) ∈ ℕ0 ↔ -(𝑀 · 𝑁) ∈ ℕ0)) |
| 14 | 8, 13 | imbitrid 244 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → -(𝑀 · 𝑁) ∈ ℕ0)) |
| 15 | olc 868 | . . . . . . . 8 ⊢ (-(𝑀 · 𝑁) ∈ ℕ0 → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)) | |
| 16 | 14, 15 | syl6 35 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
| 17 | 16, 6 | jctild 525 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
| 18 | nn0mulcl 12412 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (𝑀 · -𝑁) ∈ ℕ0) | |
| 19 | mulneg2 11549 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 · -𝑁) = -(𝑀 · 𝑁)) | |
| 20 | 9, 10, 19 | syl2an 596 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 · -𝑁) = -(𝑀 · 𝑁)) |
| 21 | 20 | eleq1d 2816 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 · -𝑁) ∈ ℕ0 ↔ -(𝑀 · 𝑁) ∈ ℕ0)) |
| 22 | 18, 21 | imbitrid 244 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → -(𝑀 · 𝑁) ∈ ℕ0)) |
| 23 | 22, 15 | syl6 35 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
| 24 | 23, 6 | jctild 525 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
| 25 | nn0mulcl 12412 | . . . . . . . . 9 ⊢ ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (-𝑀 · -𝑁) ∈ ℕ0) | |
| 26 | mul2neg 11551 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝑀 · -𝑁) = (𝑀 · 𝑁)) | |
| 27 | 9, 10, 26 | syl2an 596 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (-𝑀 · -𝑁) = (𝑀 · 𝑁)) |
| 28 | 27 | eleq1d 2816 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 · -𝑁) ∈ ℕ0 ↔ (𝑀 · 𝑁) ∈ ℕ0)) |
| 29 | 25, 28 | imbitrid 244 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0)) |
| 30 | orc 867 | . . . . . . . 8 ⊢ ((𝑀 · 𝑁) ∈ ℕ0 → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)) | |
| 31 | 29, 30 | syl6 35 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) |
| 32 | 31, 6 | jctild 525 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
| 33 | 7, 17, 24, 32 | ccased 1038 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0)))) |
| 34 | elznn0 12478 | . . . . 5 ⊢ ((𝑀 · 𝑁) ∈ ℤ ↔ ((𝑀 · 𝑁) ∈ ℝ ∧ ((𝑀 · 𝑁) ∈ ℕ0 ∨ -(𝑀 · 𝑁) ∈ ℕ0))) | |
| 35 | 33, 34 | imbitrrdi 252 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → (𝑀 · 𝑁) ∈ ℤ)) |
| 36 | 35 | imp 406 | . . 3 ⊢ (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ ((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) → (𝑀 · 𝑁) ∈ ℤ) |
| 37 | 36 | an4s 660 | . 2 ⊢ (((𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)) ∧ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) → (𝑀 · 𝑁) ∈ ℤ) |
| 38 | 1, 2, 37 | syl2anb 598 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 ℝcr 11000 · cmul 11006 -cneg 11340 ℕ0cn0 12376 ℤcz 12463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 |
| This theorem is referenced by: zdivmul 12540 msqznn 12550 zmulcld 12578 uz2mulcl 12819 qaddcl 12858 qmulcl 12860 qreccl 12862 fzctr 13535 flmulnn0 13726 zexpcl 13978 iexpcyc 14109 zesq 14128 cshweqrep 14723 fprodzcl 15856 zrisefaccl 15922 zfallfaccl 15923 addmulmodb 16171 dvdsmul1 16183 dvdsmul2 16184 muldvds1 16186 muldvds2 16187 dvdscmul 16188 dvdsmulc 16189 dvdscmulr 16190 dvdsmulcr 16191 dvds2ln 16195 dvdstr 16200 dvdsmultr1 16202 dvdsmultr2 16204 3dvdsdec 16238 3dvds2dec 16239 oexpneg 16251 mulsucdiv2z 16259 divalglem0 16299 divalglem2 16301 divalglem4 16302 divalglem8 16306 divalgb 16310 divalgmod 16312 ndvdsi 16318 gcdaddmlem 16430 absmulgcd 16455 dvdsmulgcd 16462 rpmulgcd 16463 lcmcllem 16502 rpmul 16565 cncongr1 16573 cncongr2 16574 eulerthlem2 16688 modprminv 16706 modprminveq 16707 modprm0 16712 pythagtriplem4 16726 pcpremul 16750 pcmul 16758 gzmulcl 16845 pgpfac1lem2 19984 zsubrg 21352 dvdsrzring 21393 mulgrhm 21409 pzriprnglem5 21417 pzriprng1ALT 21428 domnchr 21464 znfld 21492 znunit 21495 mbfi1fseqlem5 25642 dvexp3 25904 basellem2 27014 basellem5 27017 dvdsflf1o 27119 chtub 27145 bposlem1 27217 bposlem5 27221 bposlem6 27222 lgslem3 27232 lgsval4a 27252 lgsneg 27254 lgsdir2 27263 lgsdchr 27288 lgseisenlem1 27308 lgseisenlem2 27309 lgseisenlem3 27310 lgsquadlem1 27313 lgsquad2lem2 27318 2lgsoddprmlem2 27342 chebbnd1lem1 27402 chebbnd1lem3 27404 knoppndvlem2 36547 fzmul 37781 mzpclall 42760 mzpindd 42779 acongrep 43013 acongeq 43016 jm2.18 43021 jm2.21 43027 jm2.26a 43033 jm2.26 43035 jm2.16nn0 43037 jm2.27a 43038 jm2.27c 43040 jm3.1lem3 43052 fourierswlem 46268 oexpnegALTV 47708 oexpnegnz 47709 tgblthelfgott 47846 2zrngmmgm 48283 zlmodzxzequa 48528 zlmodzxzequap 48531 |
| Copyright terms: Public domain | W3C validator |