MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdabsOLD Structured version   Visualization version   GIF version

Theorem gcdabsOLD 16339
Description: Obsolete version of gcdabs 16338 as of 15-Sep-2024. (Contributed by Paul Chapman, 31-Mar-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
gcdabsOLD ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))

Proof of Theorem gcdabsOLD
StepHypRef Expression
1 zre 12425 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 zre 12425 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 absor 15112 . . . 4 (𝑀 ∈ ℝ → ((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀))
4 absor 15112 . . . 4 (𝑁 ∈ ℝ → ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁))
53, 4anim12i 613 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀) ∧ ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)))
61, 2, 5syl2an 596 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀) ∧ ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)))
7 oveq12 7347 . . . 4 (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
87a1i 11 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)))
9 oveq12 7347 . . . . 5 (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (-𝑀 gcd 𝑁))
10 neggcd 16330 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 gcd 𝑁) = (𝑀 gcd 𝑁))
119, 10sylan9eqr 2798 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = 𝑁)) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
1211ex 413 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)))
13 oveq12 7347 . . . . 5 (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd -𝑁))
14 gcdneg 16329 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁))
1513, 14sylan9eqr 2798 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = -𝑁)) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
1615ex 413 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = 𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)))
17 oveq12 7347 . . . . 5 (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (-𝑀 gcd -𝑁))
18 znegcl 12457 . . . . . . 7 (𝑀 ∈ ℤ → -𝑀 ∈ ℤ)
19 gcdneg 16329 . . . . . . 7 ((-𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 gcd -𝑁) = (-𝑀 gcd 𝑁))
2018, 19sylan 580 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 gcd -𝑁) = (-𝑀 gcd 𝑁))
2120, 10eqtrd 2776 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 gcd -𝑁) = (𝑀 gcd 𝑁))
2217, 21sylan9eqr 2798 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = -𝑁)) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
2322ex 413 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) = -𝑀 ∧ (abs‘𝑁) = -𝑁) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)))
248, 12, 16, 23ccased 1036 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((abs‘𝑀) = 𝑀 ∨ (abs‘𝑀) = -𝑀) ∧ ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)))
256, 24mpd 15 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1540  wcel 2105  cfv 6480  (class class class)co 7338  cr 10972  -cneg 11308  cz 12421  abscabs 15045   gcd cgcd 16301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-cnex 11029  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049  ax-pre-mulgt0 11050  ax-pre-sup 11051
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-om 7782  df-2nd 7901  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-er 8570  df-en 8806  df-dom 8807  df-sdom 8808  df-sup 9300  df-inf 9301  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310  df-div 11735  df-nn 12076  df-2 12138  df-3 12139  df-n0 12336  df-z 12422  df-uz 12685  df-rp 12833  df-seq 13824  df-exp 13885  df-cj 14910  df-re 14911  df-im 14912  df-sqrt 15046  df-abs 15047  df-dvds 16064  df-gcd 16302
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator