MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistopon Structured version   Visualization version   GIF version

Theorem indistopon 21898
Description: The indiscrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
indistopon (𝐴𝑉 → {∅, 𝐴} ∈ (TopOn‘𝐴))

Proof of Theorem indistopon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sspr 4746 . . . . 5 (𝑥 ⊆ {∅, 𝐴} ↔ ((𝑥 = ∅ ∨ 𝑥 = {∅}) ∨ (𝑥 = {𝐴} ∨ 𝑥 = {∅, 𝐴})))
2 unieq 4830 . . . . . . . . 9 (𝑥 = ∅ → 𝑥 = ∅)
3 uni0 4849 . . . . . . . . . 10 ∅ = ∅
4 0ex 5200 . . . . . . . . . . 11 ∅ ∈ V
54prid1 4678 . . . . . . . . . 10 ∅ ∈ {∅, 𝐴}
63, 5eqeltri 2834 . . . . . . . . 9 ∅ ∈ {∅, 𝐴}
72, 6eqeltrdi 2846 . . . . . . . 8 (𝑥 = ∅ → 𝑥 ∈ {∅, 𝐴})
87a1i 11 . . . . . . 7 (𝐴𝑉 → (𝑥 = ∅ → 𝑥 ∈ {∅, 𝐴}))
9 unieq 4830 . . . . . . . . 9 (𝑥 = {∅} → 𝑥 = {∅})
104unisn 4841 . . . . . . . . . 10 {∅} = ∅
1110, 5eqeltri 2834 . . . . . . . . 9 {∅} ∈ {∅, 𝐴}
129, 11eqeltrdi 2846 . . . . . . . 8 (𝑥 = {∅} → 𝑥 ∈ {∅, 𝐴})
1312a1i 11 . . . . . . 7 (𝐴𝑉 → (𝑥 = {∅} → 𝑥 ∈ {∅, 𝐴}))
148, 13jaod 859 . . . . . 6 (𝐴𝑉 → ((𝑥 = ∅ ∨ 𝑥 = {∅}) → 𝑥 ∈ {∅, 𝐴}))
15 unieq 4830 . . . . . . . . . 10 (𝑥 = {𝐴} → 𝑥 = {𝐴})
16 unisng 4840 . . . . . . . . . 10 (𝐴𝑉 {𝐴} = 𝐴)
1715, 16sylan9eqr 2800 . . . . . . . . 9 ((𝐴𝑉𝑥 = {𝐴}) → 𝑥 = 𝐴)
18 prid2g 4677 . . . . . . . . . 10 (𝐴𝑉𝐴 ∈ {∅, 𝐴})
1918adantr 484 . . . . . . . . 9 ((𝐴𝑉𝑥 = {𝐴}) → 𝐴 ∈ {∅, 𝐴})
2017, 19eqeltrd 2838 . . . . . . . 8 ((𝐴𝑉𝑥 = {𝐴}) → 𝑥 ∈ {∅, 𝐴})
2120ex 416 . . . . . . 7 (𝐴𝑉 → (𝑥 = {𝐴} → 𝑥 ∈ {∅, 𝐴}))
22 unieq 4830 . . . . . . . . . 10 (𝑥 = {∅, 𝐴} → 𝑥 = {∅, 𝐴})
23 uniprg 4836 . . . . . . . . . . . 12 ((∅ ∈ V ∧ 𝐴𝑉) → {∅, 𝐴} = (∅ ∪ 𝐴))
244, 23mpan 690 . . . . . . . . . . 11 (𝐴𝑉 {∅, 𝐴} = (∅ ∪ 𝐴))
25 uncom 4067 . . . . . . . . . . . 12 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
26 un0 4305 . . . . . . . . . . . 12 (𝐴 ∪ ∅) = 𝐴
2725, 26eqtri 2765 . . . . . . . . . . 11 (∅ ∪ 𝐴) = 𝐴
2824, 27eqtrdi 2794 . . . . . . . . . 10 (𝐴𝑉 {∅, 𝐴} = 𝐴)
2922, 28sylan9eqr 2800 . . . . . . . . 9 ((𝐴𝑉𝑥 = {∅, 𝐴}) → 𝑥 = 𝐴)
3018adantr 484 . . . . . . . . 9 ((𝐴𝑉𝑥 = {∅, 𝐴}) → 𝐴 ∈ {∅, 𝐴})
3129, 30eqeltrd 2838 . . . . . . . 8 ((𝐴𝑉𝑥 = {∅, 𝐴}) → 𝑥 ∈ {∅, 𝐴})
3231ex 416 . . . . . . 7 (𝐴𝑉 → (𝑥 = {∅, 𝐴} → 𝑥 ∈ {∅, 𝐴}))
3321, 32jaod 859 . . . . . 6 (𝐴𝑉 → ((𝑥 = {𝐴} ∨ 𝑥 = {∅, 𝐴}) → 𝑥 ∈ {∅, 𝐴}))
3414, 33jaod 859 . . . . 5 (𝐴𝑉 → (((𝑥 = ∅ ∨ 𝑥 = {∅}) ∨ (𝑥 = {𝐴} ∨ 𝑥 = {∅, 𝐴})) → 𝑥 ∈ {∅, 𝐴}))
351, 34syl5bi 245 . . . 4 (𝐴𝑉 → (𝑥 ⊆ {∅, 𝐴} → 𝑥 ∈ {∅, 𝐴}))
3635alrimiv 1935 . . 3 (𝐴𝑉 → ∀𝑥(𝑥 ⊆ {∅, 𝐴} → 𝑥 ∈ {∅, 𝐴}))
37 vex 3412 . . . . . 6 𝑥 ∈ V
3837elpr 4564 . . . . 5 (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴))
39 vex 3412 . . . . . . . . 9 𝑦 ∈ V
4039elpr 4564 . . . . . . . 8 (𝑦 ∈ {∅, 𝐴} ↔ (𝑦 = ∅ ∨ 𝑦 = 𝐴))
41 simpr 488 . . . . . . . . . . . . . 14 ((𝑥 = ∅ ∧ 𝑦 = ∅) → 𝑦 = ∅)
4241ineq2d 4127 . . . . . . . . . . . . 13 ((𝑥 = ∅ ∧ 𝑦 = ∅) → (𝑥𝑦) = (𝑥 ∩ ∅))
43 in0 4306 . . . . . . . . . . . . 13 (𝑥 ∩ ∅) = ∅
4442, 43eqtrdi 2794 . . . . . . . . . . . 12 ((𝑥 = ∅ ∧ 𝑦 = ∅) → (𝑥𝑦) = ∅)
4544, 5eqeltrdi 2846 . . . . . . . . . . 11 ((𝑥 = ∅ ∧ 𝑦 = ∅) → (𝑥𝑦) ∈ {∅, 𝐴})
4645a1i 11 . . . . . . . . . 10 (𝐴𝑉 → ((𝑥 = ∅ ∧ 𝑦 = ∅) → (𝑥𝑦) ∈ {∅, 𝐴}))
47 simpr 488 . . . . . . . . . . . . . 14 ((𝑥 = 𝐴𝑦 = ∅) → 𝑦 = ∅)
4847ineq2d 4127 . . . . . . . . . . . . 13 ((𝑥 = 𝐴𝑦 = ∅) → (𝑥𝑦) = (𝑥 ∩ ∅))
4948, 43eqtrdi 2794 . . . . . . . . . . . 12 ((𝑥 = 𝐴𝑦 = ∅) → (𝑥𝑦) = ∅)
5049, 5eqeltrdi 2846 . . . . . . . . . . 11 ((𝑥 = 𝐴𝑦 = ∅) → (𝑥𝑦) ∈ {∅, 𝐴})
5150a1i 11 . . . . . . . . . 10 (𝐴𝑉 → ((𝑥 = 𝐴𝑦 = ∅) → (𝑥𝑦) ∈ {∅, 𝐴}))
52 simpl 486 . . . . . . . . . . . . . 14 ((𝑥 = ∅ ∧ 𝑦 = 𝐴) → 𝑥 = ∅)
5352ineq1d 4126 . . . . . . . . . . . . 13 ((𝑥 = ∅ ∧ 𝑦 = 𝐴) → (𝑥𝑦) = (∅ ∩ 𝑦))
54 0in 4308 . . . . . . . . . . . . 13 (∅ ∩ 𝑦) = ∅
5553, 54eqtrdi 2794 . . . . . . . . . . . 12 ((𝑥 = ∅ ∧ 𝑦 = 𝐴) → (𝑥𝑦) = ∅)
5655, 5eqeltrdi 2846 . . . . . . . . . . 11 ((𝑥 = ∅ ∧ 𝑦 = 𝐴) → (𝑥𝑦) ∈ {∅, 𝐴})
5756a1i 11 . . . . . . . . . 10 (𝐴𝑉 → ((𝑥 = ∅ ∧ 𝑦 = 𝐴) → (𝑥𝑦) ∈ {∅, 𝐴}))
58 ineq12 4122 . . . . . . . . . . . . . 14 ((𝑥 = 𝐴𝑦 = 𝐴) → (𝑥𝑦) = (𝐴𝐴))
5958adantl 485 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝑥 = 𝐴𝑦 = 𝐴)) → (𝑥𝑦) = (𝐴𝐴))
60 inidm 4133 . . . . . . . . . . . . 13 (𝐴𝐴) = 𝐴
6159, 60eqtrdi 2794 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑥 = 𝐴𝑦 = 𝐴)) → (𝑥𝑦) = 𝐴)
6218adantr 484 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑥 = 𝐴𝑦 = 𝐴)) → 𝐴 ∈ {∅, 𝐴})
6361, 62eqeltrd 2838 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑥 = 𝐴𝑦 = 𝐴)) → (𝑥𝑦) ∈ {∅, 𝐴})
6463ex 416 . . . . . . . . . 10 (𝐴𝑉 → ((𝑥 = 𝐴𝑦 = 𝐴) → (𝑥𝑦) ∈ {∅, 𝐴}))
6546, 51, 57, 64ccased 1039 . . . . . . . . 9 (𝐴𝑉 → (((𝑥 = ∅ ∨ 𝑥 = 𝐴) ∧ (𝑦 = ∅ ∨ 𝑦 = 𝐴)) → (𝑥𝑦) ∈ {∅, 𝐴}))
6665expdimp 456 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) → ((𝑦 = ∅ ∨ 𝑦 = 𝐴) → (𝑥𝑦) ∈ {∅, 𝐴}))
6740, 66syl5bi 245 . . . . . . 7 ((𝐴𝑉 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) → (𝑦 ∈ {∅, 𝐴} → (𝑥𝑦) ∈ {∅, 𝐴}))
6867ralrimiv 3104 . . . . . 6 ((𝐴𝑉 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) → ∀𝑦 ∈ {∅, 𝐴} (𝑥𝑦) ∈ {∅, 𝐴})
6968ex 416 . . . . 5 (𝐴𝑉 → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) → ∀𝑦 ∈ {∅, 𝐴} (𝑥𝑦) ∈ {∅, 𝐴}))
7038, 69syl5bi 245 . . . 4 (𝐴𝑉 → (𝑥 ∈ {∅, 𝐴} → ∀𝑦 ∈ {∅, 𝐴} (𝑥𝑦) ∈ {∅, 𝐴}))
7170ralrimiv 3104 . . 3 (𝐴𝑉 → ∀𝑥 ∈ {∅, 𝐴}∀𝑦 ∈ {∅, 𝐴} (𝑥𝑦) ∈ {∅, 𝐴})
72 prex 5325 . . . 4 {∅, 𝐴} ∈ V
73 istopg 21792 . . . 4 ({∅, 𝐴} ∈ V → ({∅, 𝐴} ∈ Top ↔ (∀𝑥(𝑥 ⊆ {∅, 𝐴} → 𝑥 ∈ {∅, 𝐴}) ∧ ∀𝑥 ∈ {∅, 𝐴}∀𝑦 ∈ {∅, 𝐴} (𝑥𝑦) ∈ {∅, 𝐴})))
7472, 73mp1i 13 . . 3 (𝐴𝑉 → ({∅, 𝐴} ∈ Top ↔ (∀𝑥(𝑥 ⊆ {∅, 𝐴} → 𝑥 ∈ {∅, 𝐴}) ∧ ∀𝑥 ∈ {∅, 𝐴}∀𝑦 ∈ {∅, 𝐴} (𝑥𝑦) ∈ {∅, 𝐴})))
7536, 71, 74mpbir2and 713 . 2 (𝐴𝑉 → {∅, 𝐴} ∈ Top)
7628eqcomd 2743 . 2 (𝐴𝑉𝐴 = {∅, 𝐴})
77 istopon 21809 . 2 ({∅, 𝐴} ∈ (TopOn‘𝐴) ↔ ({∅, 𝐴} ∈ Top ∧ 𝐴 = {∅, 𝐴}))
7875, 76, 77sylanbrc 586 1 (𝐴𝑉 → {∅, 𝐴} ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847  wal 1541   = wceq 1543  wcel 2110  wral 3061  Vcvv 3408  cun 3864  cin 3865  wss 3866  c0 4237  {csn 4541  {cpr 4543   cuni 4819  cfv 6380  Topctop 21790  TopOnctopon 21807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-iota 6338  df-fun 6382  df-fv 6388  df-top 21791  df-topon 21808
This theorem is referenced by:  indistop  21899  indisuni  21900  indistpsx  21907  indistpsALT  21910  indistps2ALT  21911  cnindis  22189  indishmph  22695  indistgp  22997  topdifinf  35257
  Copyright terms: Public domain W3C validator