| Step | Hyp | Ref
| Expression |
| 1 | | sspr 4835 |
. . . . 5
⊢ (𝑥 ⊆ {∅, 𝐴} ↔ ((𝑥 = ∅ ∨ 𝑥 = {∅}) ∨ (𝑥 = {𝐴} ∨ 𝑥 = {∅, 𝐴}))) |
| 2 | | unieq 4918 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → ∪ 𝑥 =
∪ ∅) |
| 3 | | uni0 4935 |
. . . . . . . . . 10
⊢ ∪ ∅ = ∅ |
| 4 | | 0ex 5307 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
| 5 | 4 | prid1 4762 |
. . . . . . . . . 10
⊢ ∅
∈ {∅, 𝐴} |
| 6 | 3, 5 | eqeltri 2837 |
. . . . . . . . 9
⊢ ∪ ∅ ∈ {∅, 𝐴} |
| 7 | 2, 6 | eqeltrdi 2849 |
. . . . . . . 8
⊢ (𝑥 = ∅ → ∪ 𝑥
∈ {∅, 𝐴}) |
| 8 | 7 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (𝑥 = ∅ → ∪ 𝑥
∈ {∅, 𝐴})) |
| 9 | | unieq 4918 |
. . . . . . . . 9
⊢ (𝑥 = {∅} → ∪ 𝑥 =
∪ {∅}) |
| 10 | 4 | unisn 4926 |
. . . . . . . . . 10
⊢ ∪ {∅} = ∅ |
| 11 | 10, 5 | eqeltri 2837 |
. . . . . . . . 9
⊢ ∪ {∅} ∈ {∅, 𝐴} |
| 12 | 9, 11 | eqeltrdi 2849 |
. . . . . . . 8
⊢ (𝑥 = {∅} → ∪ 𝑥
∈ {∅, 𝐴}) |
| 13 | 12 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (𝑥 = {∅} → ∪ 𝑥
∈ {∅, 𝐴})) |
| 14 | 8, 13 | jaod 860 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → ((𝑥 = ∅ ∨ 𝑥 = {∅}) → ∪ 𝑥
∈ {∅, 𝐴})) |
| 15 | | unieq 4918 |
. . . . . . . . . 10
⊢ (𝑥 = {𝐴} → ∪ 𝑥 = ∪
{𝐴}) |
| 16 | | unisng 4925 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
| 17 | 15, 16 | sylan9eqr 2799 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 = {𝐴}) → ∪ 𝑥 = 𝐴) |
| 18 | | prid2g 4761 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {∅, 𝐴}) |
| 19 | 18 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 = {𝐴}) → 𝐴 ∈ {∅, 𝐴}) |
| 20 | 17, 19 | eqeltrd 2841 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 = {𝐴}) → ∪ 𝑥 ∈ {∅, 𝐴}) |
| 21 | 20 | ex 412 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (𝑥 = {𝐴} → ∪ 𝑥 ∈ {∅, 𝐴})) |
| 22 | | unieq 4918 |
. . . . . . . . . 10
⊢ (𝑥 = {∅, 𝐴} → ∪ 𝑥 = ∪
{∅, 𝐴}) |
| 23 | | uniprg 4923 |
. . . . . . . . . . . 12
⊢ ((∅
∈ V ∧ 𝐴 ∈
𝑉) → ∪ {∅, 𝐴} = (∅ ∪ 𝐴)) |
| 24 | 4, 23 | mpan 690 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → ∪
{∅, 𝐴} = (∅
∪ 𝐴)) |
| 25 | | uncom 4158 |
. . . . . . . . . . . 12
⊢ (∅
∪ 𝐴) = (𝐴 ∪ ∅) |
| 26 | | un0 4394 |
. . . . . . . . . . . 12
⊢ (𝐴 ∪ ∅) = 𝐴 |
| 27 | 25, 26 | eqtri 2765 |
. . . . . . . . . . 11
⊢ (∅
∪ 𝐴) = 𝐴 |
| 28 | 24, 27 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ∪
{∅, 𝐴} = 𝐴) |
| 29 | 22, 28 | sylan9eqr 2799 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 = {∅, 𝐴}) → ∪ 𝑥 = 𝐴) |
| 30 | 18 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 = {∅, 𝐴}) → 𝐴 ∈ {∅, 𝐴}) |
| 31 | 29, 30 | eqeltrd 2841 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 = {∅, 𝐴}) → ∪ 𝑥 ∈ {∅, 𝐴}) |
| 32 | 31 | ex 412 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (𝑥 = {∅, 𝐴} → ∪ 𝑥 ∈ {∅, 𝐴})) |
| 33 | 21, 32 | jaod 860 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → ((𝑥 = {𝐴} ∨ 𝑥 = {∅, 𝐴}) → ∪ 𝑥 ∈ {∅, 𝐴})) |
| 34 | 14, 33 | jaod 860 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (((𝑥 = ∅ ∨ 𝑥 = {∅}) ∨ (𝑥 = {𝐴} ∨ 𝑥 = {∅, 𝐴})) → ∪
𝑥 ∈ {∅, 𝐴})) |
| 35 | 1, 34 | biimtrid 242 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝑥 ⊆ {∅, 𝐴} → ∪ 𝑥 ∈ {∅, 𝐴})) |
| 36 | 35 | alrimiv 1927 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ∀𝑥(𝑥 ⊆ {∅, 𝐴} → ∪ 𝑥 ∈ {∅, 𝐴})) |
| 37 | | vex 3484 |
. . . . . 6
⊢ 𝑥 ∈ V |
| 38 | 37 | elpr 4650 |
. . . . 5
⊢ (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) |
| 39 | | vex 3484 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
| 40 | 39 | elpr 4650 |
. . . . . . . 8
⊢ (𝑦 ∈ {∅, 𝐴} ↔ (𝑦 = ∅ ∨ 𝑦 = 𝐴)) |
| 41 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = ∅ ∧ 𝑦 = ∅) → 𝑦 = ∅) |
| 42 | 41 | ineq2d 4220 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = ∅ ∧ 𝑦 = ∅) → (𝑥 ∩ 𝑦) = (𝑥 ∩ ∅)) |
| 43 | | in0 4395 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∩ ∅) =
∅ |
| 44 | 42, 43 | eqtrdi 2793 |
. . . . . . . . . . . 12
⊢ ((𝑥 = ∅ ∧ 𝑦 = ∅) → (𝑥 ∩ 𝑦) = ∅) |
| 45 | 44, 5 | eqeltrdi 2849 |
. . . . . . . . . . 11
⊢ ((𝑥 = ∅ ∧ 𝑦 = ∅) → (𝑥 ∩ 𝑦) ∈ {∅, 𝐴}) |
| 46 | 45 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ((𝑥 = ∅ ∧ 𝑦 = ∅) → (𝑥 ∩ 𝑦) ∈ {∅, 𝐴})) |
| 47 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = ∅) → 𝑦 = ∅) |
| 48 | 47 | ineq2d 4220 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = ∅) → (𝑥 ∩ 𝑦) = (𝑥 ∩ ∅)) |
| 49 | 48, 43 | eqtrdi 2793 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = ∅) → (𝑥 ∩ 𝑦) = ∅) |
| 50 | 49, 5 | eqeltrdi 2849 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = ∅) → (𝑥 ∩ 𝑦) ∈ {∅, 𝐴}) |
| 51 | 50 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ((𝑥 = 𝐴 ∧ 𝑦 = ∅) → (𝑥 ∩ 𝑦) ∈ {∅, 𝐴})) |
| 52 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) → 𝑥 = ∅) |
| 53 | 52 | ineq1d 4219 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) → (𝑥 ∩ 𝑦) = (∅ ∩ 𝑦)) |
| 54 | | 0in 4397 |
. . . . . . . . . . . . 13
⊢ (∅
∩ 𝑦) =
∅ |
| 55 | 53, 54 | eqtrdi 2793 |
. . . . . . . . . . . 12
⊢ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) → (𝑥 ∩ 𝑦) = ∅) |
| 56 | 55, 5 | eqeltrdi 2849 |
. . . . . . . . . . 11
⊢ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) → (𝑥 ∩ 𝑦) ∈ {∅, 𝐴}) |
| 57 | 56 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ((𝑥 = ∅ ∧ 𝑦 = 𝐴) → (𝑥 ∩ 𝑦) ∈ {∅, 𝐴})) |
| 58 | | ineq12 4215 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → (𝑥 ∩ 𝑦) = (𝐴 ∩ 𝐴)) |
| 59 | 58 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) → (𝑥 ∩ 𝑦) = (𝐴 ∩ 𝐴)) |
| 60 | | inidm 4227 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 61 | 59, 60 | eqtrdi 2793 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) → (𝑥 ∩ 𝑦) = 𝐴) |
| 62 | 18 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) → 𝐴 ∈ {∅, 𝐴}) |
| 63 | 61, 62 | eqeltrd 2841 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) → (𝑥 ∩ 𝑦) ∈ {∅, 𝐴}) |
| 64 | 63 | ex 412 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → (𝑥 ∩ 𝑦) ∈ {∅, 𝐴})) |
| 65 | 46, 51, 57, 64 | ccased 1039 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → (((𝑥 = ∅ ∨ 𝑥 = 𝐴) ∧ (𝑦 = ∅ ∨ 𝑦 = 𝐴)) → (𝑥 ∩ 𝑦) ∈ {∅, 𝐴})) |
| 66 | 65 | expdimp 452 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) → ((𝑦 = ∅ ∨ 𝑦 = 𝐴) → (𝑥 ∩ 𝑦) ∈ {∅, 𝐴})) |
| 67 | 40, 66 | biimtrid 242 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) → (𝑦 ∈ {∅, 𝐴} → (𝑥 ∩ 𝑦) ∈ {∅, 𝐴})) |
| 68 | 67 | ralrimiv 3145 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) → ∀𝑦 ∈ {∅, 𝐴} (𝑥 ∩ 𝑦) ∈ {∅, 𝐴}) |
| 69 | 68 | ex 412 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) → ∀𝑦 ∈ {∅, 𝐴} (𝑥 ∩ 𝑦) ∈ {∅, 𝐴})) |
| 70 | 38, 69 | biimtrid 242 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ {∅, 𝐴} → ∀𝑦 ∈ {∅, 𝐴} (𝑥 ∩ 𝑦) ∈ {∅, 𝐴})) |
| 71 | 70 | ralrimiv 3145 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ {∅, 𝐴}∀𝑦 ∈ {∅, 𝐴} (𝑥 ∩ 𝑦) ∈ {∅, 𝐴}) |
| 72 | | prex 5437 |
. . . 4
⊢ {∅,
𝐴} ∈
V |
| 73 | | istopg 22901 |
. . . 4
⊢
({∅, 𝐴} ∈
V → ({∅, 𝐴}
∈ Top ↔ (∀𝑥(𝑥 ⊆ {∅, 𝐴} → ∪ 𝑥 ∈ {∅, 𝐴}) ∧ ∀𝑥 ∈ {∅, 𝐴}∀𝑦 ∈ {∅, 𝐴} (𝑥 ∩ 𝑦) ∈ {∅, 𝐴}))) |
| 74 | 72, 73 | mp1i 13 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ({∅, 𝐴} ∈ Top ↔ (∀𝑥(𝑥 ⊆ {∅, 𝐴} → ∪ 𝑥 ∈ {∅, 𝐴}) ∧ ∀𝑥 ∈ {∅, 𝐴}∀𝑦 ∈ {∅, 𝐴} (𝑥 ∩ 𝑦) ∈ {∅, 𝐴}))) |
| 75 | 36, 71, 74 | mpbir2and 713 |
. 2
⊢ (𝐴 ∈ 𝑉 → {∅, 𝐴} ∈ Top) |
| 76 | 28 | eqcomd 2743 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐴 = ∪ {∅,
𝐴}) |
| 77 | | istopon 22918 |
. 2
⊢
({∅, 𝐴} ∈
(TopOn‘𝐴) ↔
({∅, 𝐴} ∈ Top
∧ 𝐴 = ∪ {∅, 𝐴})) |
| 78 | 75, 76, 77 | sylanbrc 583 |
1
⊢ (𝐴 ∈ 𝑉 → {∅, 𝐴} ∈ (TopOn‘𝐴)) |