Proof of Theorem acongtr
Step | Hyp | Ref
| Expression |
1 | | congtr 40703 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → 𝐴 ∥ (𝐵 − 𝐷)) |
2 | 1 | 3expa 1116 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → 𝐴 ∥ (𝐵 − 𝐷)) |
3 | 2 | orcd 869 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))) |
4 | 3 | ex 412 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷)) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))) |
5 | | simpll 763 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
6 | | znegcl 12285 |
. . . . . . . 8
⊢ (𝐶 ∈ ℤ → -𝐶 ∈
ℤ) |
7 | | znegcl 12285 |
. . . . . . . 8
⊢ (𝐷 ∈ ℤ → -𝐷 ∈
ℤ) |
8 | 6, 7 | anim12i 612 |
. . . . . . 7
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐶 ∈ ℤ ∧ -𝐷 ∈
ℤ)) |
9 | 8 | ad2antlr 723 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → (-𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ)) |
10 | | simplll 771 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − 𝐷)) → 𝐴 ∈ ℤ) |
11 | | simplrl 773 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − 𝐷)) → 𝐶 ∈ ℤ) |
12 | | simplrr 774 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − 𝐷)) → 𝐷 ∈ ℤ) |
13 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − 𝐷)) → 𝐴 ∥ (𝐶 − 𝐷)) |
14 | | congsym 40706 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐴 ∥ (𝐶 − 𝐷))) → 𝐴 ∥ (𝐷 − 𝐶)) |
15 | 10, 11, 12, 13, 14 | syl22anc 835 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − 𝐷)) → 𝐴 ∥ (𝐷 − 𝐶)) |
16 | 15 | ex 412 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶 − 𝐷) → 𝐴 ∥ (𝐷 − 𝐶))) |
17 | | zcn 12254 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ ℤ → 𝐶 ∈
ℂ) |
18 | 17 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐶 ∈
ℂ) |
19 | | zcn 12254 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ ℤ → 𝐷 ∈
ℂ) |
20 | 19 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐷 ∈
ℂ) |
21 | 18, 20 | neg2subd 11279 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐶 − -𝐷) = (𝐷 − 𝐶)) |
22 | 21 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (-𝐶 − -𝐷) = (𝐷 − 𝐶)) |
23 | 22 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐷 − 𝐶) = (-𝐶 − -𝐷)) |
24 | 23 | breq2d 5082 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐷 − 𝐶) ↔ 𝐴 ∥ (-𝐶 − -𝐷))) |
25 | 16, 24 | sylibd 238 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶 − 𝐷) → 𝐴 ∥ (-𝐶 − -𝐷))) |
26 | 25 | anim2d 611 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷)) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − -𝐷)))) |
27 | 26 | imp 406 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − -𝐷))) |
28 | | congtr 40703 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (-𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − -𝐷))) → 𝐴 ∥ (𝐵 − -𝐷)) |
29 | 5, 9, 27, 28 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → 𝐴 ∥ (𝐵 − -𝐷)) |
30 | 29 | olcd 870 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))) |
31 | 30 | ex 412 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷)) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))) |
32 | | simpll 763 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
33 | 7 | anim2i 616 |
. . . . . . 7
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶 ∈ ℤ ∧ -𝐷 ∈
ℤ)) |
34 | 33 | ad2antlr 723 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ)) |
35 | | simpr 484 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) |
36 | | congtr 40703 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (𝐵 − -𝐷)) |
37 | 32, 34, 35, 36 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (𝐵 − -𝐷)) |
38 | 37 | olcd 870 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))) |
39 | 38 | ex 412 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))) |
40 | | simpll 763 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
41 | 6 | anim1i 614 |
. . . . . . 7
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐶 ∈ ℤ ∧ 𝐷 ∈
ℤ)) |
42 | 41 | ad2antlr 723 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (-𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) |
43 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐴 ∈
ℤ) |
44 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈
ℤ) |
45 | 43, 44 | anim12i 612 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝐶 ∈
ℤ)) |
46 | 45 | an42s 657 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝐶 ∈
ℤ)) |
47 | 46 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
48 | 7 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → -𝐷 ∈
ℤ) |
49 | 48 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → -𝐷 ∈ ℤ) |
50 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → 𝐴 ∥ (𝐶 − -𝐷)) |
51 | | congsym 40706 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (-𝐷 ∈ ℤ ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (-𝐷 − 𝐶)) |
52 | 47, 49, 50, 51 | syl12anc 833 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → 𝐴 ∥ (-𝐷 − 𝐶)) |
53 | 52 | ex 412 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶 − -𝐷) → 𝐴 ∥ (-𝐷 − 𝐶))) |
54 | 18 | negnegd 11253 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → --𝐶 = 𝐶) |
55 | 54 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐷 − --𝐶) = (-𝐷 − 𝐶)) |
56 | | zcn 12254 |
. . . . . . . . . . . . . . 15
⊢ (-𝐶 ∈ ℤ → -𝐶 ∈
ℂ) |
57 | 56 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((-𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ) → -𝐶 ∈
ℂ) |
58 | 8, 57 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → -𝐶 ∈
ℂ) |
59 | 20, 58 | neg2subd 11279 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐷 − --𝐶) = (-𝐶 − 𝐷)) |
60 | 55, 59 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐷 − 𝐶) = (-𝐶 − 𝐷)) |
61 | 60 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (-𝐷 − 𝐶) = (-𝐶 − 𝐷)) |
62 | 61 | breq2d 5082 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (-𝐷 − 𝐶) ↔ 𝐴 ∥ (-𝐶 − 𝐷))) |
63 | 53, 62 | sylibd 238 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶 − -𝐷) → 𝐴 ∥ (-𝐶 − 𝐷))) |
64 | 63 | anim2d 611 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − 𝐷)))) |
65 | 64 | imp 406 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − 𝐷))) |
66 | | congtr 40703 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (-𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − 𝐷))) → 𝐴 ∥ (𝐵 − 𝐷)) |
67 | 40, 42, 65, 66 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (𝐵 − 𝐷)) |
68 | 67 | orcd 869 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))) |
69 | 68 | ex 412 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))) |
70 | 4, 31, 39, 69 | ccased 1035 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) →
(((𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) ∧ (𝐴 ∥ (𝐶 − 𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))) |
71 | 70 | 3impia 1115 |
1
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ((𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) ∧ (𝐴 ∥ (𝐶 − 𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷)))) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))) |