Proof of Theorem acongtr
| Step | Hyp | Ref
| Expression |
| 1 | | congtr 42977 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → 𝐴 ∥ (𝐵 − 𝐷)) |
| 2 | 1 | 3expa 1119 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → 𝐴 ∥ (𝐵 − 𝐷)) |
| 3 | 2 | orcd 874 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))) |
| 4 | 3 | ex 412 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷)) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))) |
| 5 | | simpll 767 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
| 6 | | znegcl 12652 |
. . . . . . . 8
⊢ (𝐶 ∈ ℤ → -𝐶 ∈
ℤ) |
| 7 | | znegcl 12652 |
. . . . . . . 8
⊢ (𝐷 ∈ ℤ → -𝐷 ∈
ℤ) |
| 8 | 6, 7 | anim12i 613 |
. . . . . . 7
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐶 ∈ ℤ ∧ -𝐷 ∈
ℤ)) |
| 9 | 8 | ad2antlr 727 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → (-𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ)) |
| 10 | | simplll 775 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − 𝐷)) → 𝐴 ∈ ℤ) |
| 11 | | simplrl 777 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − 𝐷)) → 𝐶 ∈ ℤ) |
| 12 | | simplrr 778 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − 𝐷)) → 𝐷 ∈ ℤ) |
| 13 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − 𝐷)) → 𝐴 ∥ (𝐶 − 𝐷)) |
| 14 | | congsym 42980 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐴 ∥ (𝐶 − 𝐷))) → 𝐴 ∥ (𝐷 − 𝐶)) |
| 15 | 10, 11, 12, 13, 14 | syl22anc 839 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − 𝐷)) → 𝐴 ∥ (𝐷 − 𝐶)) |
| 16 | 15 | ex 412 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶 − 𝐷) → 𝐴 ∥ (𝐷 − 𝐶))) |
| 17 | | zcn 12618 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ ℤ → 𝐶 ∈
ℂ) |
| 18 | 17 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐶 ∈
ℂ) |
| 19 | | zcn 12618 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ ℤ → 𝐷 ∈
ℂ) |
| 20 | 19 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐷 ∈
ℂ) |
| 21 | 18, 20 | neg2subd 11637 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐶 − -𝐷) = (𝐷 − 𝐶)) |
| 22 | 21 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (-𝐶 − -𝐷) = (𝐷 − 𝐶)) |
| 23 | 22 | eqcomd 2743 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐷 − 𝐶) = (-𝐶 − -𝐷)) |
| 24 | 23 | breq2d 5155 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐷 − 𝐶) ↔ 𝐴 ∥ (-𝐶 − -𝐷))) |
| 25 | 16, 24 | sylibd 239 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶 − 𝐷) → 𝐴 ∥ (-𝐶 − -𝐷))) |
| 26 | 25 | anim2d 612 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷)) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − -𝐷)))) |
| 27 | 26 | imp 406 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − -𝐷))) |
| 28 | | congtr 42977 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (-𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − -𝐷))) → 𝐴 ∥ (𝐵 − -𝐷)) |
| 29 | 5, 9, 27, 28 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → 𝐴 ∥ (𝐵 − -𝐷)) |
| 30 | 29 | olcd 875 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷))) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))) |
| 31 | 30 | ex 412 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − 𝐷)) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))) |
| 32 | | simpll 767 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
| 33 | 7 | anim2i 617 |
. . . . . . 7
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶 ∈ ℤ ∧ -𝐷 ∈
ℤ)) |
| 34 | 33 | ad2antlr 727 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ)) |
| 35 | | simpr 484 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) |
| 36 | | congtr 42977 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (𝐵 − -𝐷)) |
| 37 | 32, 34, 35, 36 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (𝐵 − -𝐷)) |
| 38 | 37 | olcd 875 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))) |
| 39 | 38 | ex 412 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − 𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))) |
| 40 | | simpll 767 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
| 41 | 6 | anim1i 615 |
. . . . . . 7
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐶 ∈ ℤ ∧ 𝐷 ∈
ℤ)) |
| 42 | 41 | ad2antlr 727 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (-𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) |
| 43 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐴 ∈
ℤ) |
| 44 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈
ℤ) |
| 45 | 43, 44 | anim12i 613 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝐶 ∈
ℤ)) |
| 46 | 45 | an42s 661 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝐶 ∈
ℤ)) |
| 47 | 46 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
| 48 | 7 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → -𝐷 ∈
ℤ) |
| 49 | 48 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → -𝐷 ∈ ℤ) |
| 50 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → 𝐴 ∥ (𝐶 − -𝐷)) |
| 51 | | congsym 42980 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (-𝐷 ∈ ℤ ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (-𝐷 − 𝐶)) |
| 52 | 47, 49, 50, 51 | syl12anc 837 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → 𝐴 ∥ (-𝐷 − 𝐶)) |
| 53 | 52 | ex 412 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶 − -𝐷) → 𝐴 ∥ (-𝐷 − 𝐶))) |
| 54 | 18 | negnegd 11611 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → --𝐶 = 𝐶) |
| 55 | 54 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐷 − --𝐶) = (-𝐷 − 𝐶)) |
| 56 | | zcn 12618 |
. . . . . . . . . . . . . . 15
⊢ (-𝐶 ∈ ℤ → -𝐶 ∈
ℂ) |
| 57 | 56 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((-𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ) → -𝐶 ∈
ℂ) |
| 58 | 8, 57 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → -𝐶 ∈
ℂ) |
| 59 | 20, 58 | neg2subd 11637 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐷 − --𝐶) = (-𝐶 − 𝐷)) |
| 60 | 55, 59 | eqtr3d 2779 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐷 − 𝐶) = (-𝐶 − 𝐷)) |
| 61 | 60 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (-𝐷 − 𝐶) = (-𝐶 − 𝐷)) |
| 62 | 61 | breq2d 5155 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (-𝐷 − 𝐶) ↔ 𝐴 ∥ (-𝐶 − 𝐷))) |
| 63 | 53, 62 | sylibd 239 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶 − -𝐷) → 𝐴 ∥ (-𝐶 − 𝐷))) |
| 64 | 63 | anim2d 612 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − 𝐷)))) |
| 65 | 64 | imp 406 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − 𝐷))) |
| 66 | | congtr 42977 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (-𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − 𝐷))) → 𝐴 ∥ (𝐵 − 𝐷)) |
| 67 | 40, 42, 65, 66 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (𝐵 − 𝐷)) |
| 68 | 67 | orcd 874 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))) |
| 69 | 68 | ex 412 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))) |
| 70 | 4, 31, 39, 69 | ccased 1039 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) →
(((𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) ∧ (𝐴 ∥ (𝐶 − 𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))) |
| 71 | 70 | 3impia 1118 |
1
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ((𝐴 ∥ (𝐵 − 𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) ∧ (𝐴 ∥ (𝐶 − 𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷)))) → (𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))) |