Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acongtr Structured version   Visualization version   GIF version

Theorem acongtr 42974
Description: Transitivity of alternating congruence. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
acongtr (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ((𝐴 ∥ (𝐵𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷)))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))

Proof of Theorem acongtr
StepHypRef Expression
1 congtr 42961 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → 𝐴 ∥ (𝐵𝐷))
213expa 1118 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → 𝐴 ∥ (𝐵𝐷))
32orcd 873 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))
43ex 412 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶𝐷)) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))))
5 simpll 766 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
6 znegcl 12575 . . . . . . . 8 (𝐶 ∈ ℤ → -𝐶 ∈ ℤ)
7 znegcl 12575 . . . . . . . 8 (𝐷 ∈ ℤ → -𝐷 ∈ ℤ)
86, 7anim12i 613 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ))
98ad2antlr 727 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → (-𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ))
10 simplll 774 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶𝐷)) → 𝐴 ∈ ℤ)
11 simplrl 776 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶𝐷)) → 𝐶 ∈ ℤ)
12 simplrr 777 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶𝐷)) → 𝐷 ∈ ℤ)
13 simpr 484 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶𝐷)) → 𝐴 ∥ (𝐶𝐷))
14 congsym 42964 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐴 ∥ (𝐶𝐷))) → 𝐴 ∥ (𝐷𝐶))
1510, 11, 12, 13, 14syl22anc 838 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶𝐷)) → 𝐴 ∥ (𝐷𝐶))
1615ex 412 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶𝐷) → 𝐴 ∥ (𝐷𝐶)))
17 zcn 12541 . . . . . . . . . . . . . 14 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
1817adantr 480 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐶 ∈ ℂ)
19 zcn 12541 . . . . . . . . . . . . . 14 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
2019adantl 481 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℂ)
2118, 20neg2subd 11557 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐶 − -𝐷) = (𝐷𝐶))
2221adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (-𝐶 − -𝐷) = (𝐷𝐶))
2322eqcomd 2736 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐷𝐶) = (-𝐶 − -𝐷))
2423breq2d 5122 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐷𝐶) ↔ 𝐴 ∥ (-𝐶 − -𝐷)))
2516, 24sylibd 239 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶𝐷) → 𝐴 ∥ (-𝐶 − -𝐷)))
2625anim2d 612 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷)) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − -𝐷))))
2726imp 406 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − -𝐷)))
28 congtr 42961 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (-𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶 − -𝐷))) → 𝐴 ∥ (𝐵 − -𝐷))
295, 9, 27, 28syl3anc 1373 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → 𝐴 ∥ (𝐵 − -𝐷))
3029olcd 874 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))
3130ex 412 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶𝐷)) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))))
32 simpll 766 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
337anim2i 617 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ))
3433ad2antlr 727 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ))
35 simpr 484 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷)))
36 congtr 42961 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (𝐵 − -𝐷))
3732, 34, 35, 36syl3anc 1373 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (𝐵 − -𝐷))
3837olcd 874 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))
3938ex 412 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))))
40 simpll 766 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
416anim1i 615 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ))
4241ad2antlr 727 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (-𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ))
43 simpl 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ ℤ)
44 simpr 484 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
4543, 44anim12i 613 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ))
4645an42s 661 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ))
4746adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ))
487adantl 481 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → -𝐷 ∈ ℤ)
4948ad2antlr 727 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → -𝐷 ∈ ℤ)
50 simpr 484 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → 𝐴 ∥ (𝐶 − -𝐷))
51 congsym 42964 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (-𝐷 ∈ ℤ ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (-𝐷𝐶))
5247, 49, 50, 51syl12anc 836 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → 𝐴 ∥ (-𝐷𝐶))
5352ex 412 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶 − -𝐷) → 𝐴 ∥ (-𝐷𝐶)))
5418negnegd 11531 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → --𝐶 = 𝐶)
5554oveq2d 7406 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐷 − --𝐶) = (-𝐷𝐶))
56 zcn 12541 . . . . . . . . . . . . . . 15 (-𝐶 ∈ ℤ → -𝐶 ∈ ℂ)
5756adantr 480 . . . . . . . . . . . . . 14 ((-𝐶 ∈ ℤ ∧ -𝐷 ∈ ℤ) → -𝐶 ∈ ℂ)
588, 57syl 17 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → -𝐶 ∈ ℂ)
5920, 58neg2subd 11557 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐷 − --𝐶) = (-𝐶𝐷))
6055, 59eqtr3d 2767 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (-𝐷𝐶) = (-𝐶𝐷))
6160adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (-𝐷𝐶) = (-𝐶𝐷))
6261breq2d 5122 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (-𝐷𝐶) ↔ 𝐴 ∥ (-𝐶𝐷)))
6353, 62sylibd 239 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 ∥ (𝐶 − -𝐷) → 𝐴 ∥ (-𝐶𝐷)))
6463anim2d 612 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶𝐷))))
6564imp 406 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶𝐷)))
66 congtr 42961 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (-𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (-𝐶𝐷))) → 𝐴 ∥ (𝐵𝐷))
6740, 42, 65, 66syl3anc 1373 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → 𝐴 ∥ (𝐵𝐷))
6867orcd 873 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ (𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))
6968ex 412 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 ∥ (𝐵 − -𝐶) ∧ 𝐴 ∥ (𝐶 − -𝐷)) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))))
704, 31, 39, 69ccased 1038 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (((𝐴 ∥ (𝐵𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷))))
71703impia 1117 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ((𝐴 ∥ (𝐵𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) ∧ (𝐴 ∥ (𝐶𝐷) ∨ 𝐴 ∥ (𝐶 − -𝐷)))) → (𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  (class class class)co 7390  cc 11073  cmin 11412  -cneg 11413  cz 12536  cdvds 16229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-dvds 16230
This theorem is referenced by:  jm2.25lem1  42994  jm2.26  42998  jm2.27a  43001
  Copyright terms: Public domain W3C validator