MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2lem5 Structured version   Visualization version   GIF version

Theorem lgsdir2lem5 25899
Description: Lemma for lgsdir2 25900. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})

Proof of Theorem lgsdir2lem5
StepHypRef Expression
1 ovex 7183 . . . . . . 7 (𝐴 mod 8) ∈ V
21elpr 4583 . . . . . 6 ((𝐴 mod 8) ∈ {3, 5} ↔ ((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5))
3 ovex 7183 . . . . . . 7 (𝐵 mod 8) ∈ V
43elpr 4583 . . . . . 6 ((𝐵 mod 8) ∈ {3, 5} ↔ ((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5))
52, 4anbi12i 628 . . . . 5 (((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5}) ↔ (((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5) ∧ ((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5)))
6 simpll 765 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 𝐴 ∈ ℤ)
7 3z 12009 . . . . . . . . . 10 3 ∈ ℤ
87a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 3 ∈ ℤ)
9 simplr 767 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 𝐵 ∈ ℤ)
10 8re 11727 . . . . . . . . . . 11 8 ∈ ℝ
11 8pos 11743 . . . . . . . . . . 11 0 < 8
1210, 11elrpii 12386 . . . . . . . . . 10 8 ∈ ℝ+
1312a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 8 ∈ ℝ+)
14 simprl 769 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = 3)
15 lgsdir2lem1 25895 . . . . . . . . . . . 12 (((1 mod 8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) = 5))
1615simpri 488 . . . . . . . . . . 11 ((3 mod 8) = 3 ∧ (-3 mod 8) = 5)
1716simpli 486 . . . . . . . . . 10 (3 mod 8) = 3
1814, 17syl6eqr 2874 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = (3 mod 8))
19 simprr 771 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = 3)
2019, 17syl6eqr 2874 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = (3 mod 8))
216, 8, 9, 8, 13, 18, 20modmul12d 13287 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8))
2221orcd 869 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
2322ex 415 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
24 simpll 765 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 𝐴 ∈ ℤ)
25 znegcl 12011 . . . . . . . . . . 11 (3 ∈ ℤ → -3 ∈ ℤ)
267, 25mp1i 13 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → -3 ∈ ℤ)
27 simplr 767 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 𝐵 ∈ ℤ)
287a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 3 ∈ ℤ)
2912a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 8 ∈ ℝ+)
30 simprl 769 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = 5)
3116simpri 488 . . . . . . . . . . 11 (-3 mod 8) = 5
3230, 31syl6eqr 2874 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = (-3 mod 8))
33 simprr 771 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = 3)
3433, 17syl6eqr 2874 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = (3 mod 8))
3524, 26, 27, 28, 29, 32, 34modmul12d 13287 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = ((-3 · 3) mod 8))
36 3cn 11712 . . . . . . . . . . 11 3 ∈ ℂ
3736, 36mulneg1i 11080 . . . . . . . . . 10 (-3 · 3) = -(3 · 3)
3837oveq1i 7160 . . . . . . . . 9 ((-3 · 3) mod 8) = (-(3 · 3) mod 8)
3935, 38syl6eq 2872 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))
4039olcd 870 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
4140ex 415 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
42 simpll 765 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 𝐴 ∈ ℤ)
437a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 3 ∈ ℤ)
44 simplr 767 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 𝐵 ∈ ℤ)
457, 25mp1i 13 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → -3 ∈ ℤ)
4612a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 8 ∈ ℝ+)
47 simprl 769 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = 3)
4847, 17syl6eqr 2874 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = (3 mod 8))
49 simprr 771 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = 5)
5049, 31syl6eqr 2874 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = (-3 mod 8))
5142, 43, 44, 45, 46, 48, 50modmul12d 13287 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((3 · -3) mod 8))
5236, 36mulneg2i 11081 . . . . . . . . . 10 (3 · -3) = -(3 · 3)
5352oveq1i 7160 . . . . . . . . 9 ((3 · -3) mod 8) = (-(3 · 3) mod 8)
5451, 53syl6eq 2872 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))
5554olcd 870 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
5655ex 415 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
57 simpll 765 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 𝐴 ∈ ℤ)
587, 25mp1i 13 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → -3 ∈ ℤ)
59 simplr 767 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 𝐵 ∈ ℤ)
6012a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 8 ∈ ℝ+)
61 simprl 769 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = 5)
6261, 31syl6eqr 2874 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = (-3 mod 8))
63 simprr 771 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = 5)
6463, 31syl6eqr 2874 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = (-3 mod 8))
6557, 58, 59, 58, 60, 62, 64modmul12d 13287 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((-3 · -3) mod 8))
6636, 36mul2negi 11082 . . . . . . . . . 10 (-3 · -3) = (3 · 3)
6766oveq1i 7160 . . . . . . . . 9 ((-3 · -3) mod 8) = ((3 · 3) mod 8)
6865, 67syl6eq 2872 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8))
6968orcd 869 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
7069ex 415 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
7123, 41, 56, 70ccased 1033 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5) ∧ ((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
725, 71syl5bi 244 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5}) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
7372imp 409 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
74 ovex 7183 . . . 4 ((𝐴 · 𝐵) mod 8) ∈ V
7574elpr 4583 . . 3 (((𝐴 · 𝐵) mod 8) ∈ {((3 · 3) mod 8), (-(3 · 3) mod 8)} ↔ (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
7673, 75sylibr 236 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {((3 · 3) mod 8), (-(3 · 3) mod 8)})
77 df-9 11701 . . . . . . . 8 9 = (8 + 1)
78 8cn 11728 . . . . . . . . 9 8 ∈ ℂ
79 ax-1cn 10589 . . . . . . . . 9 1 ∈ ℂ
8078, 79addcomi 10825 . . . . . . . 8 (8 + 1) = (1 + 8)
8177, 80eqtri 2844 . . . . . . 7 9 = (1 + 8)
82 3t3e9 11798 . . . . . . 7 (3 · 3) = 9
8378mulid2i 10640 . . . . . . . 8 (1 · 8) = 8
8483oveq2i 7161 . . . . . . 7 (1 + (1 · 8)) = (1 + 8)
8581, 82, 843eqtr4i 2854 . . . . . 6 (3 · 3) = (1 + (1 · 8))
8685oveq1i 7160 . . . . 5 ((3 · 3) mod 8) = ((1 + (1 · 8)) mod 8)
87 1re 10635 . . . . . 6 1 ∈ ℝ
88 1z 12006 . . . . . 6 1 ∈ ℤ
89 modcyc 13268 . . . . . 6 ((1 ∈ ℝ ∧ 8 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((1 + (1 · 8)) mod 8) = (1 mod 8))
9087, 12, 88, 89mp3an 1457 . . . . 5 ((1 + (1 · 8)) mod 8) = (1 mod 8)
9186, 90eqtri 2844 . . . 4 ((3 · 3) mod 8) = (1 mod 8)
9215simpli 486 . . . . 5 ((1 mod 8) = 1 ∧ (-1 mod 8) = 7)
9392simpli 486 . . . 4 (1 mod 8) = 1
9491, 93eqtri 2844 . . 3 ((3 · 3) mod 8) = 1
95 znegcl 12011 . . . . . . . 8 (1 ∈ ℤ → -1 ∈ ℤ)
9688, 95mp1i 13 . . . . . . 7 (⊤ → -1 ∈ ℤ)
97 3nn 11710 . . . . . . . . . 10 3 ∈ ℕ
9897, 97nnmulcli 11656 . . . . . . . . 9 (3 · 3) ∈ ℕ
9998nnzi 12000 . . . . . . . 8 (3 · 3) ∈ ℤ
10099a1i 11 . . . . . . 7 (⊤ → (3 · 3) ∈ ℤ)
10188a1i 11 . . . . . . 7 (⊤ → 1 ∈ ℤ)
10212a1i 11 . . . . . . 7 (⊤ → 8 ∈ ℝ+)
103 eqidd 2822 . . . . . . 7 (⊤ → (-1 mod 8) = (-1 mod 8))
10491a1i 11 . . . . . . 7 (⊤ → ((3 · 3) mod 8) = (1 mod 8))
10596, 96, 100, 101, 102, 103, 104modmul12d 13287 . . . . . 6 (⊤ → ((-1 · (3 · 3)) mod 8) = ((-1 · 1) mod 8))
106105mptru 1540 . . . . 5 ((-1 · (3 · 3)) mod 8) = ((-1 · 1) mod 8)
10736, 36mulcli 10642 . . . . . . 7 (3 · 3) ∈ ℂ
108107mulm1i 11079 . . . . . 6 (-1 · (3 · 3)) = -(3 · 3)
109108oveq1i 7160 . . . . 5 ((-1 · (3 · 3)) mod 8) = (-(3 · 3) mod 8)
11079mulm1i 11079 . . . . . 6 (-1 · 1) = -1
111110oveq1i 7160 . . . . 5 ((-1 · 1) mod 8) = (-1 mod 8)
112106, 109, 1113eqtr3i 2852 . . . 4 (-(3 · 3) mod 8) = (-1 mod 8)
11392simpri 488 . . . 4 (-1 mod 8) = 7
114112, 113eqtri 2844 . . 3 (-(3 · 3) mod 8) = 7
11594, 114preq12i 4667 . 2 {((3 · 3) mod 8), (-(3 · 3) mod 8)} = {1, 7}
11676, 115eleqtrdi 2923 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1533  wtru 1534  wcel 2110  {cpr 4562  (class class class)co 7150  cr 10530  1c1 10532   + caddc 10534   · cmul 10536  -cneg 10865  3c3 11687  5c5 11689  7c7 11691  8c8 11692  9c9 11693  cz 11975  +crp 12383   mod cmo 13231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fl 13156  df-mod 13232
This theorem is referenced by:  lgsdir2  25900
  Copyright terms: Public domain W3C validator