MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2lem5 Structured version   Visualization version   GIF version

Theorem lgsdir2lem5 26832
Description: Lemma for lgsdir2 26833. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})

Proof of Theorem lgsdir2lem5
StepHypRef Expression
1 ovex 7442 . . . . . . 7 (𝐴 mod 8) ∈ V
21elpr 4652 . . . . . 6 ((𝐴 mod 8) ∈ {3, 5} ↔ ((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5))
3 ovex 7442 . . . . . . 7 (𝐵 mod 8) ∈ V
43elpr 4652 . . . . . 6 ((𝐵 mod 8) ∈ {3, 5} ↔ ((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5))
52, 4anbi12i 628 . . . . 5 (((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5}) ↔ (((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5) ∧ ((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5)))
6 simpll 766 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 𝐴 ∈ ℤ)
7 3z 12595 . . . . . . . . . 10 3 ∈ ℤ
87a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 3 ∈ ℤ)
9 simplr 768 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 𝐵 ∈ ℤ)
10 8re 12308 . . . . . . . . . . 11 8 ∈ ℝ
11 8pos 12324 . . . . . . . . . . 11 0 < 8
1210, 11elrpii 12977 . . . . . . . . . 10 8 ∈ ℝ+
1312a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 8 ∈ ℝ+)
14 simprl 770 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = 3)
15 lgsdir2lem1 26828 . . . . . . . . . . . 12 (((1 mod 8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) = 5))
1615simpri 487 . . . . . . . . . . 11 ((3 mod 8) = 3 ∧ (-3 mod 8) = 5)
1716simpli 485 . . . . . . . . . 10 (3 mod 8) = 3
1814, 17eqtr4di 2791 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = (3 mod 8))
19 simprr 772 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = 3)
2019, 17eqtr4di 2791 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = (3 mod 8))
216, 8, 9, 8, 13, 18, 20modmul12d 13890 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8))
2221orcd 872 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
2322ex 414 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
24 simpll 766 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 𝐴 ∈ ℤ)
25 znegcl 12597 . . . . . . . . . . 11 (3 ∈ ℤ → -3 ∈ ℤ)
267, 25mp1i 13 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → -3 ∈ ℤ)
27 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 𝐵 ∈ ℤ)
287a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 3 ∈ ℤ)
2912a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 8 ∈ ℝ+)
30 simprl 770 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = 5)
3116simpri 487 . . . . . . . . . . 11 (-3 mod 8) = 5
3230, 31eqtr4di 2791 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = (-3 mod 8))
33 simprr 772 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = 3)
3433, 17eqtr4di 2791 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = (3 mod 8))
3524, 26, 27, 28, 29, 32, 34modmul12d 13890 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = ((-3 · 3) mod 8))
36 3cn 12293 . . . . . . . . . . 11 3 ∈ ℂ
3736, 36mulneg1i 11660 . . . . . . . . . 10 (-3 · 3) = -(3 · 3)
3837oveq1i 7419 . . . . . . . . 9 ((-3 · 3) mod 8) = (-(3 · 3) mod 8)
3935, 38eqtrdi 2789 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))
4039olcd 873 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
4140ex 414 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
42 simpll 766 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 𝐴 ∈ ℤ)
437a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 3 ∈ ℤ)
44 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 𝐵 ∈ ℤ)
457, 25mp1i 13 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → -3 ∈ ℤ)
4612a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 8 ∈ ℝ+)
47 simprl 770 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = 3)
4847, 17eqtr4di 2791 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = (3 mod 8))
49 simprr 772 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = 5)
5049, 31eqtr4di 2791 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = (-3 mod 8))
5142, 43, 44, 45, 46, 48, 50modmul12d 13890 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((3 · -3) mod 8))
5236, 36mulneg2i 11661 . . . . . . . . . 10 (3 · -3) = -(3 · 3)
5352oveq1i 7419 . . . . . . . . 9 ((3 · -3) mod 8) = (-(3 · 3) mod 8)
5451, 53eqtrdi 2789 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))
5554olcd 873 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
5655ex 414 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
57 simpll 766 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 𝐴 ∈ ℤ)
587, 25mp1i 13 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → -3 ∈ ℤ)
59 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 𝐵 ∈ ℤ)
6012a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 8 ∈ ℝ+)
61 simprl 770 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = 5)
6261, 31eqtr4di 2791 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = (-3 mod 8))
63 simprr 772 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = 5)
6463, 31eqtr4di 2791 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = (-3 mod 8))
6557, 58, 59, 58, 60, 62, 64modmul12d 13890 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((-3 · -3) mod 8))
6636, 36mul2negi 11662 . . . . . . . . . 10 (-3 · -3) = (3 · 3)
6766oveq1i 7419 . . . . . . . . 9 ((-3 · -3) mod 8) = ((3 · 3) mod 8)
6865, 67eqtrdi 2789 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8))
6968orcd 872 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
7069ex 414 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
7123, 41, 56, 70ccased 1038 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5) ∧ ((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
725, 71biimtrid 241 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5}) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8))))
7372imp 408 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
74 ovex 7442 . . . 4 ((𝐴 · 𝐵) mod 8) ∈ V
7574elpr 4652 . . 3 (((𝐴 · 𝐵) mod 8) ∈ {((3 · 3) mod 8), (-(3 · 3) mod 8)} ↔ (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod 8)))
7673, 75sylibr 233 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {((3 · 3) mod 8), (-(3 · 3) mod 8)})
77 df-9 12282 . . . . . . . 8 9 = (8 + 1)
78 8cn 12309 . . . . . . . . 9 8 ∈ ℂ
79 ax-1cn 11168 . . . . . . . . 9 1 ∈ ℂ
8078, 79addcomi 11405 . . . . . . . 8 (8 + 1) = (1 + 8)
8177, 80eqtri 2761 . . . . . . 7 9 = (1 + 8)
82 3t3e9 12379 . . . . . . 7 (3 · 3) = 9
8378mullidi 11219 . . . . . . . 8 (1 · 8) = 8
8483oveq2i 7420 . . . . . . 7 (1 + (1 · 8)) = (1 + 8)
8581, 82, 843eqtr4i 2771 . . . . . 6 (3 · 3) = (1 + (1 · 8))
8685oveq1i 7419 . . . . 5 ((3 · 3) mod 8) = ((1 + (1 · 8)) mod 8)
87 1re 11214 . . . . . 6 1 ∈ ℝ
88 1z 12592 . . . . . 6 1 ∈ ℤ
89 modcyc 13871 . . . . . 6 ((1 ∈ ℝ ∧ 8 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((1 + (1 · 8)) mod 8) = (1 mod 8))
9087, 12, 88, 89mp3an 1462 . . . . 5 ((1 + (1 · 8)) mod 8) = (1 mod 8)
9186, 90eqtri 2761 . . . 4 ((3 · 3) mod 8) = (1 mod 8)
9215simpli 485 . . . . 5 ((1 mod 8) = 1 ∧ (-1 mod 8) = 7)
9392simpli 485 . . . 4 (1 mod 8) = 1
9491, 93eqtri 2761 . . 3 ((3 · 3) mod 8) = 1
95 znegcl 12597 . . . . . . . 8 (1 ∈ ℤ → -1 ∈ ℤ)
9688, 95mp1i 13 . . . . . . 7 (⊤ → -1 ∈ ℤ)
97 3nn 12291 . . . . . . . . . 10 3 ∈ ℕ
9897, 97nnmulcli 12237 . . . . . . . . 9 (3 · 3) ∈ ℕ
9998nnzi 12586 . . . . . . . 8 (3 · 3) ∈ ℤ
10099a1i 11 . . . . . . 7 (⊤ → (3 · 3) ∈ ℤ)
10188a1i 11 . . . . . . 7 (⊤ → 1 ∈ ℤ)
10212a1i 11 . . . . . . 7 (⊤ → 8 ∈ ℝ+)
103 eqidd 2734 . . . . . . 7 (⊤ → (-1 mod 8) = (-1 mod 8))
10491a1i 11 . . . . . . 7 (⊤ → ((3 · 3) mod 8) = (1 mod 8))
10596, 96, 100, 101, 102, 103, 104modmul12d 13890 . . . . . 6 (⊤ → ((-1 · (3 · 3)) mod 8) = ((-1 · 1) mod 8))
106105mptru 1549 . . . . 5 ((-1 · (3 · 3)) mod 8) = ((-1 · 1) mod 8)
10736, 36mulcli 11221 . . . . . . 7 (3 · 3) ∈ ℂ
108107mulm1i 11659 . . . . . 6 (-1 · (3 · 3)) = -(3 · 3)
109108oveq1i 7419 . . . . 5 ((-1 · (3 · 3)) mod 8) = (-(3 · 3) mod 8)
11079mulm1i 11659 . . . . . 6 (-1 · 1) = -1
111110oveq1i 7419 . . . . 5 ((-1 · 1) mod 8) = (-1 mod 8)
112106, 109, 1113eqtr3i 2769 . . . 4 (-(3 · 3) mod 8) = (-1 mod 8)
11392simpri 487 . . . 4 (-1 mod 8) = 7
114112, 113eqtri 2761 . . 3 (-(3 · 3) mod 8) = 7
11594, 114preq12i 4743 . 2 {((3 · 3) mod 8), (-(3 · 3) mod 8)} = {1, 7}
11676, 115eleqtrdi 2844 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 846   = wceq 1542  wtru 1543  wcel 2107  {cpr 4631  (class class class)co 7409  cr 11109  1c1 11111   + caddc 11113   · cmul 11115  -cneg 11445  3c3 12268  5c5 12270  7c7 12272  8c8 12273  9c9 12274  cz 12558  +crp 12974   mod cmo 13834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-fl 13757  df-mod 13835
This theorem is referenced by:  lgsdir2  26833
  Copyright terms: Public domain W3C validator