Proof of Theorem lgsdir2lem5
Step | Hyp | Ref
| Expression |
1 | | ovex 7340 |
. . . . . . 7
⊢ (𝐴 mod 8) ∈
V |
2 | 1 | elpr 4588 |
. . . . . 6
⊢ ((𝐴 mod 8) ∈ {3, 5} ↔
((𝐴 mod 8) = 3 ∨ (𝐴 mod 8) = 5)) |
3 | | ovex 7340 |
. . . . . . 7
⊢ (𝐵 mod 8) ∈
V |
4 | 3 | elpr 4588 |
. . . . . 6
⊢ ((𝐵 mod 8) ∈ {3, 5} ↔
((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5)) |
5 | 2, 4 | anbi12i 628 |
. . . . 5
⊢ (((𝐴 mod 8) ∈ {3, 5} ∧
(𝐵 mod 8) ∈ {3, 5})
↔ (((𝐴 mod 8) = 3 ∨
(𝐴 mod 8) = 5) ∧
((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5))) |
6 | | simpll 765 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 𝐴 ∈
ℤ) |
7 | | 3z 12399 |
. . . . . . . . . 10
⊢ 3 ∈
ℤ |
8 | 7 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 3 ∈
ℤ) |
9 | | simplr 767 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 𝐵 ∈
ℤ) |
10 | | 8re 12115 |
. . . . . . . . . . 11
⊢ 8 ∈
ℝ |
11 | | 8pos 12131 |
. . . . . . . . . . 11
⊢ 0 <
8 |
12 | 10, 11 | elrpii 12779 |
. . . . . . . . . 10
⊢ 8 ∈
ℝ+ |
13 | 12 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → 8 ∈
ℝ+) |
14 | | simprl 769 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = 3) |
15 | | lgsdir2lem1 26518 |
. . . . . . . . . . . 12
⊢ (((1 mod
8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) =
5)) |
16 | 15 | simpri 487 |
. . . . . . . . . . 11
⊢ ((3 mod
8) = 3 ∧ (-3 mod 8) = 5) |
17 | 16 | simpli 485 |
. . . . . . . . . 10
⊢ (3 mod 8)
= 3 |
18 | 14, 17 | eqtr4di 2794 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = (3 mod
8)) |
19 | | simprr 771 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = 3) |
20 | 19, 17 | eqtr4di 2794 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = (3 mod
8)) |
21 | 6, 8, 9, 8, 13, 18, 20 | modmul12d 13691 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = ((3 · 3) mod
8)) |
22 | 21 | orcd 871 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8))) |
23 | 22 | ex 414 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 3) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8)))) |
24 | | simpll 765 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 𝐴 ∈
ℤ) |
25 | | znegcl 12401 |
. . . . . . . . . . 11
⊢ (3 ∈
ℤ → -3 ∈ ℤ) |
26 | 7, 25 | mp1i 13 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → -3 ∈
ℤ) |
27 | | simplr 767 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 𝐵 ∈
ℤ) |
28 | 7 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 3 ∈
ℤ) |
29 | 12 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → 8 ∈
ℝ+) |
30 | | simprl 769 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = 5) |
31 | 16 | simpri 487 |
. . . . . . . . . . 11
⊢ (-3 mod
8) = 5 |
32 | 30, 31 | eqtr4di 2794 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐴 mod 8) = (-3 mod
8)) |
33 | | simprr 771 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = 3) |
34 | 33, 17 | eqtr4di 2794 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (𝐵 mod 8) = (3 mod
8)) |
35 | 24, 26, 27, 28, 29, 32, 34 | modmul12d 13691 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = ((-3 · 3) mod
8)) |
36 | | 3cn 12100 |
. . . . . . . . . . 11
⊢ 3 ∈
ℂ |
37 | 36, 36 | mulneg1i 11467 |
. . . . . . . . . 10
⊢ (-3
· 3) = -(3 · 3) |
38 | 37 | oveq1i 7317 |
. . . . . . . . 9
⊢ ((-3
· 3) mod 8) = (-(3 · 3) mod 8) |
39 | 35, 38 | eqtrdi 2792 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8)) |
40 | 39 | olcd 872 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8))) |
41 | 40 | ex 414 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 3) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8)))) |
42 | | simpll 765 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 𝐴 ∈
ℤ) |
43 | 7 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 3 ∈
ℤ) |
44 | | simplr 767 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 𝐵 ∈
ℤ) |
45 | 7, 25 | mp1i 13 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → -3 ∈
ℤ) |
46 | 12 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → 8 ∈
ℝ+) |
47 | | simprl 769 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = 3) |
48 | 47, 17 | eqtr4di 2794 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = (3 mod
8)) |
49 | | simprr 771 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = 5) |
50 | 49, 31 | eqtr4di 2794 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = (-3 mod
8)) |
51 | 42, 43, 44, 45, 46, 48, 50 | modmul12d 13691 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((3 · -3) mod
8)) |
52 | 36, 36 | mulneg2i 11468 |
. . . . . . . . . 10
⊢ (3
· -3) = -(3 · 3) |
53 | 52 | oveq1i 7317 |
. . . . . . . . 9
⊢ ((3
· -3) mod 8) = (-(3 · 3) mod 8) |
54 | 51, 53 | eqtrdi 2792 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8)) |
55 | 54 | olcd 872 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8))) |
56 | 55 | ex 414 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 3 ∧ (𝐵 mod 8) = 5) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8)))) |
57 | | simpll 765 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 𝐴 ∈
ℤ) |
58 | 7, 25 | mp1i 13 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → -3 ∈
ℤ) |
59 | | simplr 767 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 𝐵 ∈
ℤ) |
60 | 12 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → 8 ∈
ℝ+) |
61 | | simprl 769 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = 5) |
62 | 61, 31 | eqtr4di 2794 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐴 mod 8) = (-3 mod
8)) |
63 | | simprr 771 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = 5) |
64 | 63, 31 | eqtr4di 2794 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (𝐵 mod 8) = (-3 mod
8)) |
65 | 57, 58, 59, 58, 60, 62, 64 | modmul12d 13691 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((-3 · -3) mod
8)) |
66 | 36, 36 | mul2negi 11469 |
. . . . . . . . . 10
⊢ (-3
· -3) = (3 · 3) |
67 | 66 | oveq1i 7317 |
. . . . . . . . 9
⊢ ((-3
· -3) mod 8) = ((3 · 3) mod 8) |
68 | 65, 67 | eqtrdi 2792 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → ((𝐴 · 𝐵) mod 8) = ((3 · 3) mod
8)) |
69 | 68 | orcd 871 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8))) |
70 | 69 | ex 414 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) = 5 ∧ (𝐵 mod 8) = 5) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8)))) |
71 | 23, 41, 56, 70 | ccased 1037 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
((((𝐴 mod 8) = 3 ∨
(𝐴 mod 8) = 5) ∧
((𝐵 mod 8) = 3 ∨ (𝐵 mod 8) = 5)) → (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8)))) |
72 | 5, 71 | biimtrid 241 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 8) ∈ {3, 5} ∧
(𝐵 mod 8) ∈ {3, 5})
→ (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod
8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8)))) |
73 | 72 | imp 408 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧
(𝐵 mod 8) ∈ {3, 5}))
→ (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod
8) ∨ ((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8))) |
74 | | ovex 7340 |
. . . 4
⊢ ((𝐴 · 𝐵) mod 8) ∈ V |
75 | 74 | elpr 4588 |
. . 3
⊢ (((𝐴 · 𝐵) mod 8) ∈ {((3 · 3) mod 8),
(-(3 · 3) mod 8)} ↔ (((𝐴 · 𝐵) mod 8) = ((3 · 3) mod 8) ∨
((𝐴 · 𝐵) mod 8) = (-(3 · 3) mod
8))) |
76 | 73, 75 | sylibr 233 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧
(𝐵 mod 8) ∈ {3, 5}))
→ ((𝐴 · 𝐵) mod 8) ∈ {((3 · 3)
mod 8), (-(3 · 3) mod 8)}) |
77 | | df-9 12089 |
. . . . . . . 8
⊢ 9 = (8 +
1) |
78 | | 8cn 12116 |
. . . . . . . . 9
⊢ 8 ∈
ℂ |
79 | | ax-1cn 10975 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
80 | 78, 79 | addcomi 11212 |
. . . . . . . 8
⊢ (8 + 1) =
(1 + 8) |
81 | 77, 80 | eqtri 2764 |
. . . . . . 7
⊢ 9 = (1 +
8) |
82 | | 3t3e9 12186 |
. . . . . . 7
⊢ (3
· 3) = 9 |
83 | 78 | mulid2i 11026 |
. . . . . . . 8
⊢ (1
· 8) = 8 |
84 | 83 | oveq2i 7318 |
. . . . . . 7
⊢ (1 + (1
· 8)) = (1 + 8) |
85 | 81, 82, 84 | 3eqtr4i 2774 |
. . . . . 6
⊢ (3
· 3) = (1 + (1 · 8)) |
86 | 85 | oveq1i 7317 |
. . . . 5
⊢ ((3
· 3) mod 8) = ((1 + (1 · 8)) mod 8) |
87 | | 1re 11021 |
. . . . . 6
⊢ 1 ∈
ℝ |
88 | | 1z 12396 |
. . . . . 6
⊢ 1 ∈
ℤ |
89 | | modcyc 13672 |
. . . . . 6
⊢ ((1
∈ ℝ ∧ 8 ∈ ℝ+ ∧ 1 ∈ ℤ)
→ ((1 + (1 · 8)) mod 8) = (1 mod 8)) |
90 | 87, 12, 88, 89 | mp3an 1461 |
. . . . 5
⊢ ((1 + (1
· 8)) mod 8) = (1 mod 8) |
91 | 86, 90 | eqtri 2764 |
. . . 4
⊢ ((3
· 3) mod 8) = (1 mod 8) |
92 | 15 | simpli 485 |
. . . . 5
⊢ ((1 mod
8) = 1 ∧ (-1 mod 8) = 7) |
93 | 92 | simpli 485 |
. . . 4
⊢ (1 mod 8)
= 1 |
94 | 91, 93 | eqtri 2764 |
. . 3
⊢ ((3
· 3) mod 8) = 1 |
95 | | znegcl 12401 |
. . . . . . . 8
⊢ (1 ∈
ℤ → -1 ∈ ℤ) |
96 | 88, 95 | mp1i 13 |
. . . . . . 7
⊢ (⊤
→ -1 ∈ ℤ) |
97 | | 3nn 12098 |
. . . . . . . . . 10
⊢ 3 ∈
ℕ |
98 | 97, 97 | nnmulcli 12044 |
. . . . . . . . 9
⊢ (3
· 3) ∈ ℕ |
99 | 98 | nnzi 12390 |
. . . . . . . 8
⊢ (3
· 3) ∈ ℤ |
100 | 99 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ (3 · 3) ∈ ℤ) |
101 | 88 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 1 ∈ ℤ) |
102 | 12 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 8 ∈ ℝ+) |
103 | | eqidd 2737 |
. . . . . . 7
⊢ (⊤
→ (-1 mod 8) = (-1 mod 8)) |
104 | 91 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ ((3 · 3) mod 8) = (1 mod 8)) |
105 | 96, 96, 100, 101, 102, 103, 104 | modmul12d 13691 |
. . . . . 6
⊢ (⊤
→ ((-1 · (3 · 3)) mod 8) = ((-1 · 1) mod
8)) |
106 | 105 | mptru 1546 |
. . . . 5
⊢ ((-1
· (3 · 3)) mod 8) = ((-1 · 1) mod 8) |
107 | 36, 36 | mulcli 11028 |
. . . . . . 7
⊢ (3
· 3) ∈ ℂ |
108 | 107 | mulm1i 11466 |
. . . . . 6
⊢ (-1
· (3 · 3)) = -(3 · 3) |
109 | 108 | oveq1i 7317 |
. . . . 5
⊢ ((-1
· (3 · 3)) mod 8) = (-(3 · 3) mod 8) |
110 | 79 | mulm1i 11466 |
. . . . . 6
⊢ (-1
· 1) = -1 |
111 | 110 | oveq1i 7317 |
. . . . 5
⊢ ((-1
· 1) mod 8) = (-1 mod 8) |
112 | 106, 109,
111 | 3eqtr3i 2772 |
. . . 4
⊢ (-(3
· 3) mod 8) = (-1 mod 8) |
113 | 92 | simpri 487 |
. . . 4
⊢ (-1 mod
8) = 7 |
114 | 112, 113 | eqtri 2764 |
. . 3
⊢ (-(3
· 3) mod 8) = 7 |
115 | 94, 114 | preq12i 4678 |
. 2
⊢ {((3
· 3) mod 8), (-(3 · 3) mod 8)} = {1, 7} |
116 | 76, 115 | eleqtrdi 2847 |
1
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧
(𝐵 mod 8) ∈ {3, 5}))
→ ((𝐴 · 𝐵) mod 8) ∈ {1,
7}) |