MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgass Structured version   Visualization version   GIF version

Theorem mulgass 19043
Description: Product of group multiples, generalized to . (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgass.b 𝐵 = (Base‘𝐺)
mulgass.t · = (.g𝐺)
Assertion
Ref Expression
mulgass ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))

Proof of Theorem mulgass
StepHypRef Expression
1 simpr1 1195 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑀 ∈ ℤ)
2 elznn0 12544 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)))
32simprbi 496 . . 3 (𝑀 ∈ ℤ → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
41, 3syl 17 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
5 simpr2 1196 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑁 ∈ ℤ)
6 elznn0 12544 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
76simprbi 496 . . 3 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
85, 7syl 17 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
9 grpmnd 18872 . . . . . 6 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
109ad2antrr 726 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
11 simprl 770 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑀 ∈ ℕ0)
12 simprr 772 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
13 simplr3 1218 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑋𝐵)
14 mulgass.b . . . . . 6 𝐵 = (Base‘𝐺)
15 mulgass.t . . . . . 6 · = (.g𝐺)
1614, 15mulgnn0ass 19042 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
1710, 11, 12, 13, 16syl13anc 1374 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
1817ex 412 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
191zcnd 12639 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑀 ∈ ℂ)
205zcnd 12639 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑁 ∈ ℂ)
2119, 20mulneg1d 11631 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁))
2221adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁))
2322oveq1d 7402 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((-𝑀 · 𝑁) · 𝑋) = (-(𝑀 · 𝑁) · 𝑋))
249ad2antrr 726 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
25 simprl 770 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → -𝑀 ∈ ℕ0)
26 simprr 772 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
27 simpr3 1197 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑋𝐵)
2827adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑋𝐵)
2914, 15mulgnn0ass 19042 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((-𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)))
3024, 25, 26, 28, 29syl13anc 1374 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((-𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)))
3123, 30eqtr3d 2766 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)))
32 fveq2 6858 . . . . . . 7 ((-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)) → ((invg𝐺)‘(-(𝑀 · 𝑁) · 𝑋)) = ((invg𝐺)‘(-𝑀 · (𝑁 · 𝑋))))
33 simpl 482 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝐺 ∈ Grp)
341, 5zmulcld 12644 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · 𝑁) ∈ ℤ)
35 eqid 2729 . . . . . . . . . . . 12 (invg𝐺) = (invg𝐺)
3614, 15, 35mulgneg 19024 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑁) ∈ ℤ ∧ 𝑋𝐵) → (-(𝑀 · 𝑁) · 𝑋) = ((invg𝐺)‘((𝑀 · 𝑁) · 𝑋)))
3733, 34, 27, 36syl3anc 1373 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-(𝑀 · 𝑁) · 𝑋) = ((invg𝐺)‘((𝑀 · 𝑁) · 𝑋)))
3837fveq2d 6862 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘(-(𝑀 · 𝑁) · 𝑋)) = ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑁) · 𝑋))))
3914, 15mulgcl 19023 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑁) ∈ ℤ ∧ 𝑋𝐵) → ((𝑀 · 𝑁) · 𝑋) ∈ 𝐵)
4033, 34, 27, 39syl3anc 1373 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) ∈ 𝐵)
4114, 35grpinvinv 18937 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑁) · 𝑋) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑁) · 𝑋))) = ((𝑀 · 𝑁) · 𝑋))
4240, 41syldan 591 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑁) · 𝑋))) = ((𝑀 · 𝑁) · 𝑋))
4338, 42eqtrd 2764 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘(-(𝑀 · 𝑁) · 𝑋)) = ((𝑀 · 𝑁) · 𝑋))
4414, 15mulgcl 19023 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
4533, 5, 27, 44syl3anc 1373 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑁 · 𝑋) ∈ 𝐵)
4614, 15, 35mulgneg 19024 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑁 · 𝑋) ∈ 𝐵) → (-𝑀 · (𝑁 · 𝑋)) = ((invg𝐺)‘(𝑀 · (𝑁 · 𝑋))))
4733, 1, 45, 46syl3anc 1373 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑀 · (𝑁 · 𝑋)) = ((invg𝐺)‘(𝑀 · (𝑁 · 𝑋))))
4847fveq2d 6862 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘(-𝑀 · (𝑁 · 𝑋))) = ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑁 · 𝑋)))))
4914, 15mulgcl 19023 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑁 · 𝑋) ∈ 𝐵) → (𝑀 · (𝑁 · 𝑋)) ∈ 𝐵)
5033, 1, 45, 49syl3anc 1373 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · (𝑁 · 𝑋)) ∈ 𝐵)
5114, 35grpinvinv 18937 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 · (𝑁 · 𝑋)) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑁 · 𝑋)))) = (𝑀 · (𝑁 · 𝑋)))
5250, 51syldan 591 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑁 · 𝑋)))) = (𝑀 · (𝑁 · 𝑋)))
5348, 52eqtrd 2764 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘(-𝑀 · (𝑁 · 𝑋))) = (𝑀 · (𝑁 · 𝑋)))
5443, 53eqeq12d 2745 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (((invg𝐺)‘(-(𝑀 · 𝑁) · 𝑋)) = ((invg𝐺)‘(-𝑀 · (𝑁 · 𝑋))) ↔ ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
5532, 54imbitrid 244 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
5655imp 406 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋))) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
5731, 56syldan 591 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
5857ex 412 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((-𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
599ad2antrr 726 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
60 simprl 770 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑀 ∈ ℕ0)
61 simprr 772 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℕ0)
6227adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑋𝐵)
6314, 15mulgnn0ass 19042 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · -𝑁) · 𝑋) = (𝑀 · (-𝑁 · 𝑋)))
6459, 60, 61, 62, 63syl13anc 1374 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 · -𝑁) · 𝑋) = (𝑀 · (-𝑁 · 𝑋)))
6519, 20mulneg2d 11632 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · -𝑁) = -(𝑀 · 𝑁))
6665adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 · -𝑁) = -(𝑀 · 𝑁))
6766oveq1d 7402 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 · -𝑁) · 𝑋) = (-(𝑀 · 𝑁) · 𝑋))
6814, 15, 35mulgneg 19024 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
6933, 5, 27, 68syl3anc 1373 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
7069oveq2d 7403 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · (-𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(𝑁 · 𝑋))))
7114, 15, 35mulgneg2 19040 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑁 · 𝑋) ∈ 𝐵) → (-𝑀 · (𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(𝑁 · 𝑋))))
7233, 1, 45, 71syl3anc 1373 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑀 · (𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(𝑁 · 𝑋))))
7370, 72eqtr4d 2767 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · (-𝑁 · 𝑋)) = (-𝑀 · (𝑁 · 𝑋)))
7473adantr 480 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 · (-𝑁 · 𝑋)) = (-𝑀 · (𝑁 · 𝑋)))
7564, 67, 743eqtr3d 2772 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)))
7675, 56syldan 591 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
7776ex 412 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
789ad2antrr 726 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
79 simprl 770 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑀 ∈ ℕ0)
80 simprr 772 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℕ0)
8127adantr 480 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑋𝐵)
8214, 15mulgnn0ass 19042 . . . . . 6 ((𝐺 ∈ Mnd ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0𝑋𝐵)) → ((-𝑀 · -𝑁) · 𝑋) = (-𝑀 · (-𝑁 · 𝑋)))
8378, 79, 80, 81, 82syl13anc 1374 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((-𝑀 · -𝑁) · 𝑋) = (-𝑀 · (-𝑁 · 𝑋)))
8419, 20mul2negd 11633 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑀 · -𝑁) = (𝑀 · 𝑁))
8584oveq1d 7402 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((-𝑀 · -𝑁) · 𝑋) = ((𝑀 · 𝑁) · 𝑋))
8685adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((-𝑀 · -𝑁) · 𝑋) = ((𝑀 · 𝑁) · 𝑋))
8733adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Grp)
881adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑀 ∈ ℤ)
89 nn0z 12554 . . . . . . . . 9 (-𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ)
9089ad2antll 729 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℤ)
9114, 15mulgcl 19023 . . . . . . . 8 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) ∈ 𝐵)
9287, 90, 81, 91syl3anc 1373 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑁 · 𝑋) ∈ 𝐵)
9314, 15, 35mulgneg2 19040 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (-𝑁 · 𝑋) ∈ 𝐵) → (-𝑀 · (-𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(-𝑁 · 𝑋))))
9487, 88, 92, 93syl3anc 1373 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑀 · (-𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(-𝑁 · 𝑋))))
9514, 15, 35mulgneg 19024 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (--𝑁 · 𝑋) = ((invg𝐺)‘(-𝑁 · 𝑋)))
9687, 90, 81, 95syl3anc 1373 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (--𝑁 · 𝑋) = ((invg𝐺)‘(-𝑁 · 𝑋)))
9720negnegd 11524 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → --𝑁 = 𝑁)
9897adantr 480 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → --𝑁 = 𝑁)
9998oveq1d 7402 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (--𝑁 · 𝑋) = (𝑁 · 𝑋))
10096, 99eqtr3d 2766 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((invg𝐺)‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋))
101100oveq2d 7403 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 · ((invg𝐺)‘(-𝑁 · 𝑋))) = (𝑀 · (𝑁 · 𝑋)))
10294, 101eqtrd 2764 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑀 · (-𝑁 · 𝑋)) = (𝑀 · (𝑁 · 𝑋)))
10383, 86, 1023eqtr3d 2772 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
104103ex 412 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
10518, 58, 77, 104ccased 1038 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
1064, 8, 105mp2and 699 1 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  cr 11067   · cmul 11073  -cneg 11406  0cn0 12442  cz 12529  Basecbs 17179  Mndcmnd 18661  Grpcgrp 18865  invgcminusg 18866  .gcmg 18999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-mulg 19000
This theorem is referenced by:  mulgassr  19044  odmod  19476  odmulgid  19484  odbezout  19488  gexdvdsi  19513  pgpfac1lem2  20007  pgpfac1lem3a  20008  pgpfac1lem3  20009  mulgrhm  21387  zlmlmod  21432  elrgspnlem2  33194  primrootscoprmpow  42087  primrootscoprbij  42090  primrootspoweq0  42094  aks6d1c6lem5  42165  grpods  42182  unitscyglem1  42183  unitscyglem4  42186
  Copyright terms: Public domain W3C validator