MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgass Structured version   Visualization version   GIF version

Theorem mulgass 19099
Description: Product of group multiples, generalized to . (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgass.b 𝐵 = (Base‘𝐺)
mulgass.t · = (.g𝐺)
Assertion
Ref Expression
mulgass ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))

Proof of Theorem mulgass
StepHypRef Expression
1 simpr1 1195 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑀 ∈ ℤ)
2 elznn0 12608 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)))
32simprbi 496 . . 3 (𝑀 ∈ ℤ → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
41, 3syl 17 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
5 simpr2 1196 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑁 ∈ ℤ)
6 elznn0 12608 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
76simprbi 496 . . 3 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
85, 7syl 17 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
9 grpmnd 18928 . . . . . 6 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
109ad2antrr 726 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
11 simprl 770 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑀 ∈ ℕ0)
12 simprr 772 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
13 simplr3 1218 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑋𝐵)
14 mulgass.b . . . . . 6 𝐵 = (Base‘𝐺)
15 mulgass.t . . . . . 6 · = (.g𝐺)
1614, 15mulgnn0ass 19098 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
1710, 11, 12, 13, 16syl13anc 1374 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
1817ex 412 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
191zcnd 12703 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑀 ∈ ℂ)
205zcnd 12703 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑁 ∈ ℂ)
2119, 20mulneg1d 11695 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁))
2221adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁))
2322oveq1d 7425 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((-𝑀 · 𝑁) · 𝑋) = (-(𝑀 · 𝑁) · 𝑋))
249ad2antrr 726 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
25 simprl 770 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → -𝑀 ∈ ℕ0)
26 simprr 772 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
27 simpr3 1197 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑋𝐵)
2827adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑋𝐵)
2914, 15mulgnn0ass 19098 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((-𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)))
3024, 25, 26, 28, 29syl13anc 1374 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((-𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)))
3123, 30eqtr3d 2773 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)))
32 fveq2 6881 . . . . . . 7 ((-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)) → ((invg𝐺)‘(-(𝑀 · 𝑁) · 𝑋)) = ((invg𝐺)‘(-𝑀 · (𝑁 · 𝑋))))
33 simpl 482 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝐺 ∈ Grp)
341, 5zmulcld 12708 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · 𝑁) ∈ ℤ)
35 eqid 2736 . . . . . . . . . . . 12 (invg𝐺) = (invg𝐺)
3614, 15, 35mulgneg 19080 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑁) ∈ ℤ ∧ 𝑋𝐵) → (-(𝑀 · 𝑁) · 𝑋) = ((invg𝐺)‘((𝑀 · 𝑁) · 𝑋)))
3733, 34, 27, 36syl3anc 1373 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-(𝑀 · 𝑁) · 𝑋) = ((invg𝐺)‘((𝑀 · 𝑁) · 𝑋)))
3837fveq2d 6885 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘(-(𝑀 · 𝑁) · 𝑋)) = ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑁) · 𝑋))))
3914, 15mulgcl 19079 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑁) ∈ ℤ ∧ 𝑋𝐵) → ((𝑀 · 𝑁) · 𝑋) ∈ 𝐵)
4033, 34, 27, 39syl3anc 1373 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) ∈ 𝐵)
4114, 35grpinvinv 18993 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑁) · 𝑋) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑁) · 𝑋))) = ((𝑀 · 𝑁) · 𝑋))
4240, 41syldan 591 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑁) · 𝑋))) = ((𝑀 · 𝑁) · 𝑋))
4338, 42eqtrd 2771 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘(-(𝑀 · 𝑁) · 𝑋)) = ((𝑀 · 𝑁) · 𝑋))
4414, 15mulgcl 19079 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
4533, 5, 27, 44syl3anc 1373 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑁 · 𝑋) ∈ 𝐵)
4614, 15, 35mulgneg 19080 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑁 · 𝑋) ∈ 𝐵) → (-𝑀 · (𝑁 · 𝑋)) = ((invg𝐺)‘(𝑀 · (𝑁 · 𝑋))))
4733, 1, 45, 46syl3anc 1373 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑀 · (𝑁 · 𝑋)) = ((invg𝐺)‘(𝑀 · (𝑁 · 𝑋))))
4847fveq2d 6885 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘(-𝑀 · (𝑁 · 𝑋))) = ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑁 · 𝑋)))))
4914, 15mulgcl 19079 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑁 · 𝑋) ∈ 𝐵) → (𝑀 · (𝑁 · 𝑋)) ∈ 𝐵)
5033, 1, 45, 49syl3anc 1373 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · (𝑁 · 𝑋)) ∈ 𝐵)
5114, 35grpinvinv 18993 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 · (𝑁 · 𝑋)) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑁 · 𝑋)))) = (𝑀 · (𝑁 · 𝑋)))
5250, 51syldan 591 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑁 · 𝑋)))) = (𝑀 · (𝑁 · 𝑋)))
5348, 52eqtrd 2771 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘(-𝑀 · (𝑁 · 𝑋))) = (𝑀 · (𝑁 · 𝑋)))
5443, 53eqeq12d 2752 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (((invg𝐺)‘(-(𝑀 · 𝑁) · 𝑋)) = ((invg𝐺)‘(-𝑀 · (𝑁 · 𝑋))) ↔ ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
5532, 54imbitrid 244 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
5655imp 406 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋))) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
5731, 56syldan 591 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
5857ex 412 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((-𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
599ad2antrr 726 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
60 simprl 770 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑀 ∈ ℕ0)
61 simprr 772 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℕ0)
6227adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑋𝐵)
6314, 15mulgnn0ass 19098 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · -𝑁) · 𝑋) = (𝑀 · (-𝑁 · 𝑋)))
6459, 60, 61, 62, 63syl13anc 1374 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 · -𝑁) · 𝑋) = (𝑀 · (-𝑁 · 𝑋)))
6519, 20mulneg2d 11696 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · -𝑁) = -(𝑀 · 𝑁))
6665adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 · -𝑁) = -(𝑀 · 𝑁))
6766oveq1d 7425 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 · -𝑁) · 𝑋) = (-(𝑀 · 𝑁) · 𝑋))
6814, 15, 35mulgneg 19080 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
6933, 5, 27, 68syl3anc 1373 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
7069oveq2d 7426 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · (-𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(𝑁 · 𝑋))))
7114, 15, 35mulgneg2 19096 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑁 · 𝑋) ∈ 𝐵) → (-𝑀 · (𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(𝑁 · 𝑋))))
7233, 1, 45, 71syl3anc 1373 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑀 · (𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(𝑁 · 𝑋))))
7370, 72eqtr4d 2774 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · (-𝑁 · 𝑋)) = (-𝑀 · (𝑁 · 𝑋)))
7473adantr 480 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 · (-𝑁 · 𝑋)) = (-𝑀 · (𝑁 · 𝑋)))
7564, 67, 743eqtr3d 2779 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)))
7675, 56syldan 591 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
7776ex 412 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
789ad2antrr 726 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
79 simprl 770 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑀 ∈ ℕ0)
80 simprr 772 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℕ0)
8127adantr 480 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑋𝐵)
8214, 15mulgnn0ass 19098 . . . . . 6 ((𝐺 ∈ Mnd ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0𝑋𝐵)) → ((-𝑀 · -𝑁) · 𝑋) = (-𝑀 · (-𝑁 · 𝑋)))
8378, 79, 80, 81, 82syl13anc 1374 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((-𝑀 · -𝑁) · 𝑋) = (-𝑀 · (-𝑁 · 𝑋)))
8419, 20mul2negd 11697 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑀 · -𝑁) = (𝑀 · 𝑁))
8584oveq1d 7425 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((-𝑀 · -𝑁) · 𝑋) = ((𝑀 · 𝑁) · 𝑋))
8685adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((-𝑀 · -𝑁) · 𝑋) = ((𝑀 · 𝑁) · 𝑋))
8733adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Grp)
881adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑀 ∈ ℤ)
89 nn0z 12618 . . . . . . . . 9 (-𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ)
9089ad2antll 729 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℤ)
9114, 15mulgcl 19079 . . . . . . . 8 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) ∈ 𝐵)
9287, 90, 81, 91syl3anc 1373 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑁 · 𝑋) ∈ 𝐵)
9314, 15, 35mulgneg2 19096 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (-𝑁 · 𝑋) ∈ 𝐵) → (-𝑀 · (-𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(-𝑁 · 𝑋))))
9487, 88, 92, 93syl3anc 1373 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑀 · (-𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(-𝑁 · 𝑋))))
9514, 15, 35mulgneg 19080 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (--𝑁 · 𝑋) = ((invg𝐺)‘(-𝑁 · 𝑋)))
9687, 90, 81, 95syl3anc 1373 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (--𝑁 · 𝑋) = ((invg𝐺)‘(-𝑁 · 𝑋)))
9720negnegd 11590 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → --𝑁 = 𝑁)
9897adantr 480 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → --𝑁 = 𝑁)
9998oveq1d 7425 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (--𝑁 · 𝑋) = (𝑁 · 𝑋))
10096, 99eqtr3d 2773 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((invg𝐺)‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋))
101100oveq2d 7426 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 · ((invg𝐺)‘(-𝑁 · 𝑋))) = (𝑀 · (𝑁 · 𝑋)))
10294, 101eqtrd 2771 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑀 · (-𝑁 · 𝑋)) = (𝑀 · (𝑁 · 𝑋)))
10383, 86, 1023eqtr3d 2779 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
104103ex 412 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
10518, 58, 77, 104ccased 1038 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
1064, 8, 105mp2and 699 1 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  cr 11133   · cmul 11139  -cneg 11472  0cn0 12506  cz 12593  Basecbs 17233  Mndcmnd 18717  Grpcgrp 18921  invgcminusg 18922  .gcmg 19055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-seq 14025  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-mulg 19056
This theorem is referenced by:  mulgassr  19100  odmod  19532  odmulgid  19540  odbezout  19544  gexdvdsi  19569  pgpfac1lem2  20063  pgpfac1lem3a  20064  pgpfac1lem3  20065  mulgrhm  21443  zlmlmod  21488  elrgspnlem2  33243  primrootscoprmpow  42117  primrootscoprbij  42120  primrootspoweq0  42124  aks6d1c6lem5  42195  grpods  42212  unitscyglem1  42213  unitscyglem4  42216
  Copyright terms: Public domain W3C validator