MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgass Structured version   Visualization version   GIF version

Theorem mulgass 19032
Description: Product of group multiples, generalized to . (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgass.b 𝐵 = (Base‘𝐺)
mulgass.t · = (.g𝐺)
Assertion
Ref Expression
mulgass ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))

Proof of Theorem mulgass
StepHypRef Expression
1 simpr1 1195 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑀 ∈ ℤ)
2 elznn0 12494 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)))
32simprbi 496 . . 3 (𝑀 ∈ ℤ → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
41, 3syl 17 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
5 simpr2 1196 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑁 ∈ ℤ)
6 elznn0 12494 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
76simprbi 496 . . 3 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
85, 7syl 17 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
9 grpmnd 18861 . . . . . 6 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
109ad2antrr 726 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
11 simprl 770 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑀 ∈ ℕ0)
12 simprr 772 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
13 simplr3 1218 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑋𝐵)
14 mulgass.b . . . . . 6 𝐵 = (Base‘𝐺)
15 mulgass.t . . . . . 6 · = (.g𝐺)
1614, 15mulgnn0ass 19031 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
1710, 11, 12, 13, 16syl13anc 1374 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
1817ex 412 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
191zcnd 12588 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑀 ∈ ℂ)
205zcnd 12588 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑁 ∈ ℂ)
2119, 20mulneg1d 11581 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁))
2221adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁))
2322oveq1d 7370 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((-𝑀 · 𝑁) · 𝑋) = (-(𝑀 · 𝑁) · 𝑋))
249ad2antrr 726 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
25 simprl 770 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → -𝑀 ∈ ℕ0)
26 simprr 772 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
27 simpr3 1197 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑋𝐵)
2827adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑋𝐵)
2914, 15mulgnn0ass 19031 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((-𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)))
3024, 25, 26, 28, 29syl13anc 1374 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((-𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)))
3123, 30eqtr3d 2770 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)))
32 fveq2 6831 . . . . . . 7 ((-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)) → ((invg𝐺)‘(-(𝑀 · 𝑁) · 𝑋)) = ((invg𝐺)‘(-𝑀 · (𝑁 · 𝑋))))
33 simpl 482 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝐺 ∈ Grp)
341, 5zmulcld 12593 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · 𝑁) ∈ ℤ)
35 eqid 2733 . . . . . . . . . . . 12 (invg𝐺) = (invg𝐺)
3614, 15, 35mulgneg 19013 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑁) ∈ ℤ ∧ 𝑋𝐵) → (-(𝑀 · 𝑁) · 𝑋) = ((invg𝐺)‘((𝑀 · 𝑁) · 𝑋)))
3733, 34, 27, 36syl3anc 1373 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-(𝑀 · 𝑁) · 𝑋) = ((invg𝐺)‘((𝑀 · 𝑁) · 𝑋)))
3837fveq2d 6835 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘(-(𝑀 · 𝑁) · 𝑋)) = ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑁) · 𝑋))))
3914, 15mulgcl 19012 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑁) ∈ ℤ ∧ 𝑋𝐵) → ((𝑀 · 𝑁) · 𝑋) ∈ 𝐵)
4033, 34, 27, 39syl3anc 1373 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) ∈ 𝐵)
4114, 35grpinvinv 18926 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑁) · 𝑋) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑁) · 𝑋))) = ((𝑀 · 𝑁) · 𝑋))
4240, 41syldan 591 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑁) · 𝑋))) = ((𝑀 · 𝑁) · 𝑋))
4338, 42eqtrd 2768 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘(-(𝑀 · 𝑁) · 𝑋)) = ((𝑀 · 𝑁) · 𝑋))
4414, 15mulgcl 19012 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
4533, 5, 27, 44syl3anc 1373 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑁 · 𝑋) ∈ 𝐵)
4614, 15, 35mulgneg 19013 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑁 · 𝑋) ∈ 𝐵) → (-𝑀 · (𝑁 · 𝑋)) = ((invg𝐺)‘(𝑀 · (𝑁 · 𝑋))))
4733, 1, 45, 46syl3anc 1373 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑀 · (𝑁 · 𝑋)) = ((invg𝐺)‘(𝑀 · (𝑁 · 𝑋))))
4847fveq2d 6835 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘(-𝑀 · (𝑁 · 𝑋))) = ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑁 · 𝑋)))))
4914, 15mulgcl 19012 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑁 · 𝑋) ∈ 𝐵) → (𝑀 · (𝑁 · 𝑋)) ∈ 𝐵)
5033, 1, 45, 49syl3anc 1373 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · (𝑁 · 𝑋)) ∈ 𝐵)
5114, 35grpinvinv 18926 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 · (𝑁 · 𝑋)) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑁 · 𝑋)))) = (𝑀 · (𝑁 · 𝑋)))
5250, 51syldan 591 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑁 · 𝑋)))) = (𝑀 · (𝑁 · 𝑋)))
5348, 52eqtrd 2768 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘(-𝑀 · (𝑁 · 𝑋))) = (𝑀 · (𝑁 · 𝑋)))
5443, 53eqeq12d 2749 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (((invg𝐺)‘(-(𝑀 · 𝑁) · 𝑋)) = ((invg𝐺)‘(-𝑀 · (𝑁 · 𝑋))) ↔ ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
5532, 54imbitrid 244 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
5655imp 406 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋))) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
5731, 56syldan 591 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
5857ex 412 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((-𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
599ad2antrr 726 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
60 simprl 770 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑀 ∈ ℕ0)
61 simprr 772 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℕ0)
6227adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑋𝐵)
6314, 15mulgnn0ass 19031 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · -𝑁) · 𝑋) = (𝑀 · (-𝑁 · 𝑋)))
6459, 60, 61, 62, 63syl13anc 1374 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 · -𝑁) · 𝑋) = (𝑀 · (-𝑁 · 𝑋)))
6519, 20mulneg2d 11582 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · -𝑁) = -(𝑀 · 𝑁))
6665adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 · -𝑁) = -(𝑀 · 𝑁))
6766oveq1d 7370 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 · -𝑁) · 𝑋) = (-(𝑀 · 𝑁) · 𝑋))
6814, 15, 35mulgneg 19013 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
6933, 5, 27, 68syl3anc 1373 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
7069oveq2d 7371 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · (-𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(𝑁 · 𝑋))))
7114, 15, 35mulgneg2 19029 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑁 · 𝑋) ∈ 𝐵) → (-𝑀 · (𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(𝑁 · 𝑋))))
7233, 1, 45, 71syl3anc 1373 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑀 · (𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(𝑁 · 𝑋))))
7370, 72eqtr4d 2771 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · (-𝑁 · 𝑋)) = (-𝑀 · (𝑁 · 𝑋)))
7473adantr 480 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 · (-𝑁 · 𝑋)) = (-𝑀 · (𝑁 · 𝑋)))
7564, 67, 743eqtr3d 2776 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)))
7675, 56syldan 591 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
7776ex 412 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
789ad2antrr 726 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
79 simprl 770 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑀 ∈ ℕ0)
80 simprr 772 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℕ0)
8127adantr 480 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑋𝐵)
8214, 15mulgnn0ass 19031 . . . . . 6 ((𝐺 ∈ Mnd ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0𝑋𝐵)) → ((-𝑀 · -𝑁) · 𝑋) = (-𝑀 · (-𝑁 · 𝑋)))
8378, 79, 80, 81, 82syl13anc 1374 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((-𝑀 · -𝑁) · 𝑋) = (-𝑀 · (-𝑁 · 𝑋)))
8419, 20mul2negd 11583 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑀 · -𝑁) = (𝑀 · 𝑁))
8584oveq1d 7370 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((-𝑀 · -𝑁) · 𝑋) = ((𝑀 · 𝑁) · 𝑋))
8685adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((-𝑀 · -𝑁) · 𝑋) = ((𝑀 · 𝑁) · 𝑋))
8733adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Grp)
881adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑀 ∈ ℤ)
89 nn0z 12503 . . . . . . . . 9 (-𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ)
9089ad2antll 729 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℤ)
9114, 15mulgcl 19012 . . . . . . . 8 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) ∈ 𝐵)
9287, 90, 81, 91syl3anc 1373 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑁 · 𝑋) ∈ 𝐵)
9314, 15, 35mulgneg2 19029 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (-𝑁 · 𝑋) ∈ 𝐵) → (-𝑀 · (-𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(-𝑁 · 𝑋))))
9487, 88, 92, 93syl3anc 1373 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑀 · (-𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(-𝑁 · 𝑋))))
9514, 15, 35mulgneg 19013 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (--𝑁 · 𝑋) = ((invg𝐺)‘(-𝑁 · 𝑋)))
9687, 90, 81, 95syl3anc 1373 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (--𝑁 · 𝑋) = ((invg𝐺)‘(-𝑁 · 𝑋)))
9720negnegd 11474 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → --𝑁 = 𝑁)
9897adantr 480 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → --𝑁 = 𝑁)
9998oveq1d 7370 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (--𝑁 · 𝑋) = (𝑁 · 𝑋))
10096, 99eqtr3d 2770 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((invg𝐺)‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋))
101100oveq2d 7371 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 · ((invg𝐺)‘(-𝑁 · 𝑋))) = (𝑀 · (𝑁 · 𝑋)))
10294, 101eqtrd 2768 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑀 · (-𝑁 · 𝑋)) = (𝑀 · (𝑁 · 𝑋)))
10383, 86, 1023eqtr3d 2776 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
104103ex 412 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
10518, 58, 77, 104ccased 1038 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
1064, 8, 105mp2and 699 1 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  cfv 6489  (class class class)co 7355  cr 11016   · cmul 11022  -cneg 11356  0cn0 12392  cz 12479  Basecbs 17127  Mndcmnd 18650  Grpcgrp 18854  invgcminusg 18855  .gcmg 18988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-seq 13916  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-mulg 18989
This theorem is referenced by:  mulgassr  19033  odmod  19466  odmulgid  19474  odbezout  19478  gexdvdsi  19503  pgpfac1lem2  19997  pgpfac1lem3a  19998  pgpfac1lem3  19999  mulgrhm  21423  zlmlmod  21468  elrgspnlem2  33253  primrootscoprmpow  42265  primrootscoprbij  42268  primrootspoweq0  42272  aks6d1c6lem5  42343  grpods  42360  unitscyglem1  42361  unitscyglem4  42364
  Copyright terms: Public domain W3C validator