MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgass Structured version   Visualization version   GIF version

Theorem mulgass 19142
Description: Product of group multiples, generalized to . (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgass.b 𝐵 = (Base‘𝐺)
mulgass.t · = (.g𝐺)
Assertion
Ref Expression
mulgass ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))

Proof of Theorem mulgass
StepHypRef Expression
1 simpr1 1193 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑀 ∈ ℤ)
2 elznn0 12626 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)))
32simprbi 496 . . 3 (𝑀 ∈ ℤ → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
41, 3syl 17 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
5 simpr2 1194 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑁 ∈ ℤ)
6 elznn0 12626 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
76simprbi 496 . . 3 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
85, 7syl 17 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
9 grpmnd 18971 . . . . . 6 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
109ad2antrr 726 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
11 simprl 771 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑀 ∈ ℕ0)
12 simprr 773 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
13 simplr3 1216 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑋𝐵)
14 mulgass.b . . . . . 6 𝐵 = (Base‘𝐺)
15 mulgass.t . . . . . 6 · = (.g𝐺)
1614, 15mulgnn0ass 19141 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
1710, 11, 12, 13, 16syl13anc 1371 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
1817ex 412 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
191zcnd 12721 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑀 ∈ ℂ)
205zcnd 12721 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑁 ∈ ℂ)
2119, 20mulneg1d 11714 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁))
2221adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁))
2322oveq1d 7446 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((-𝑀 · 𝑁) · 𝑋) = (-(𝑀 · 𝑁) · 𝑋))
249ad2antrr 726 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
25 simprl 771 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → -𝑀 ∈ ℕ0)
26 simprr 773 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
27 simpr3 1195 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑋𝐵)
2827adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑋𝐵)
2914, 15mulgnn0ass 19141 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((-𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)))
3024, 25, 26, 28, 29syl13anc 1371 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((-𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)))
3123, 30eqtr3d 2777 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)))
32 fveq2 6907 . . . . . . 7 ((-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)) → ((invg𝐺)‘(-(𝑀 · 𝑁) · 𝑋)) = ((invg𝐺)‘(-𝑀 · (𝑁 · 𝑋))))
33 simpl 482 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝐺 ∈ Grp)
341, 5zmulcld 12726 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · 𝑁) ∈ ℤ)
35 eqid 2735 . . . . . . . . . . . 12 (invg𝐺) = (invg𝐺)
3614, 15, 35mulgneg 19123 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑁) ∈ ℤ ∧ 𝑋𝐵) → (-(𝑀 · 𝑁) · 𝑋) = ((invg𝐺)‘((𝑀 · 𝑁) · 𝑋)))
3733, 34, 27, 36syl3anc 1370 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-(𝑀 · 𝑁) · 𝑋) = ((invg𝐺)‘((𝑀 · 𝑁) · 𝑋)))
3837fveq2d 6911 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘(-(𝑀 · 𝑁) · 𝑋)) = ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑁) · 𝑋))))
3914, 15mulgcl 19122 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑁) ∈ ℤ ∧ 𝑋𝐵) → ((𝑀 · 𝑁) · 𝑋) ∈ 𝐵)
4033, 34, 27, 39syl3anc 1370 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) ∈ 𝐵)
4114, 35grpinvinv 19036 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑁) · 𝑋) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑁) · 𝑋))) = ((𝑀 · 𝑁) · 𝑋))
4240, 41syldan 591 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑁) · 𝑋))) = ((𝑀 · 𝑁) · 𝑋))
4338, 42eqtrd 2775 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘(-(𝑀 · 𝑁) · 𝑋)) = ((𝑀 · 𝑁) · 𝑋))
4414, 15mulgcl 19122 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
4533, 5, 27, 44syl3anc 1370 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑁 · 𝑋) ∈ 𝐵)
4614, 15, 35mulgneg 19123 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑁 · 𝑋) ∈ 𝐵) → (-𝑀 · (𝑁 · 𝑋)) = ((invg𝐺)‘(𝑀 · (𝑁 · 𝑋))))
4733, 1, 45, 46syl3anc 1370 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑀 · (𝑁 · 𝑋)) = ((invg𝐺)‘(𝑀 · (𝑁 · 𝑋))))
4847fveq2d 6911 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘(-𝑀 · (𝑁 · 𝑋))) = ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑁 · 𝑋)))))
4914, 15mulgcl 19122 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑁 · 𝑋) ∈ 𝐵) → (𝑀 · (𝑁 · 𝑋)) ∈ 𝐵)
5033, 1, 45, 49syl3anc 1370 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · (𝑁 · 𝑋)) ∈ 𝐵)
5114, 35grpinvinv 19036 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 · (𝑁 · 𝑋)) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑁 · 𝑋)))) = (𝑀 · (𝑁 · 𝑋)))
5250, 51syldan 591 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑁 · 𝑋)))) = (𝑀 · (𝑁 · 𝑋)))
5348, 52eqtrd 2775 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((invg𝐺)‘(-𝑀 · (𝑁 · 𝑋))) = (𝑀 · (𝑁 · 𝑋)))
5443, 53eqeq12d 2751 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (((invg𝐺)‘(-(𝑀 · 𝑁) · 𝑋)) = ((invg𝐺)‘(-𝑀 · (𝑁 · 𝑋))) ↔ ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
5532, 54imbitrid 244 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
5655imp 406 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋))) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
5731, 56syldan 591 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
5857ex 412 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((-𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
599ad2antrr 726 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
60 simprl 771 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑀 ∈ ℕ0)
61 simprr 773 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℕ0)
6227adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑋𝐵)
6314, 15mulgnn0ass 19141 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · -𝑁) · 𝑋) = (𝑀 · (-𝑁 · 𝑋)))
6459, 60, 61, 62, 63syl13anc 1371 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 · -𝑁) · 𝑋) = (𝑀 · (-𝑁 · 𝑋)))
6519, 20mulneg2d 11715 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · -𝑁) = -(𝑀 · 𝑁))
6665adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 · -𝑁) = -(𝑀 · 𝑁))
6766oveq1d 7446 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 · -𝑁) · 𝑋) = (-(𝑀 · 𝑁) · 𝑋))
6814, 15, 35mulgneg 19123 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
6933, 5, 27, 68syl3anc 1370 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
7069oveq2d 7447 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · (-𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(𝑁 · 𝑋))))
7114, 15, 35mulgneg2 19139 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑁 · 𝑋) ∈ 𝐵) → (-𝑀 · (𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(𝑁 · 𝑋))))
7233, 1, 45, 71syl3anc 1370 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑀 · (𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(𝑁 · 𝑋))))
7370, 72eqtr4d 2778 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · (-𝑁 · 𝑋)) = (-𝑀 · (𝑁 · 𝑋)))
7473adantr 480 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 · (-𝑁 · 𝑋)) = (-𝑀 · (𝑁 · 𝑋)))
7564, 67, 743eqtr3d 2783 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-(𝑀 · 𝑁) · 𝑋) = (-𝑀 · (𝑁 · 𝑋)))
7675, 56syldan 591 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
7776ex 412 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
789ad2antrr 726 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
79 simprl 771 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑀 ∈ ℕ0)
80 simprr 773 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℕ0)
8127adantr 480 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑋𝐵)
8214, 15mulgnn0ass 19141 . . . . . 6 ((𝐺 ∈ Mnd ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0𝑋𝐵)) → ((-𝑀 · -𝑁) · 𝑋) = (-𝑀 · (-𝑁 · 𝑋)))
8378, 79, 80, 81, 82syl13anc 1371 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((-𝑀 · -𝑁) · 𝑋) = (-𝑀 · (-𝑁 · 𝑋)))
8419, 20mul2negd 11716 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑀 · -𝑁) = (𝑀 · 𝑁))
8584oveq1d 7446 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((-𝑀 · -𝑁) · 𝑋) = ((𝑀 · 𝑁) · 𝑋))
8685adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((-𝑀 · -𝑁) · 𝑋) = ((𝑀 · 𝑁) · 𝑋))
8733adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Grp)
881adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑀 ∈ ℤ)
89 nn0z 12636 . . . . . . . . 9 (-𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ)
9089ad2antll 729 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℤ)
9114, 15mulgcl 19122 . . . . . . . 8 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) ∈ 𝐵)
9287, 90, 81, 91syl3anc 1370 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑁 · 𝑋) ∈ 𝐵)
9314, 15, 35mulgneg2 19139 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (-𝑁 · 𝑋) ∈ 𝐵) → (-𝑀 · (-𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(-𝑁 · 𝑋))))
9487, 88, 92, 93syl3anc 1370 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑀 · (-𝑁 · 𝑋)) = (𝑀 · ((invg𝐺)‘(-𝑁 · 𝑋))))
9514, 15, 35mulgneg 19123 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (--𝑁 · 𝑋) = ((invg𝐺)‘(-𝑁 · 𝑋)))
9687, 90, 81, 95syl3anc 1370 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (--𝑁 · 𝑋) = ((invg𝐺)‘(-𝑁 · 𝑋)))
9720negnegd 11609 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → --𝑁 = 𝑁)
9897adantr 480 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → --𝑁 = 𝑁)
9998oveq1d 7446 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (--𝑁 · 𝑋) = (𝑁 · 𝑋))
10096, 99eqtr3d 2777 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((invg𝐺)‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋))
101100oveq2d 7447 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 · ((invg𝐺)‘(-𝑁 · 𝑋))) = (𝑀 · (𝑁 · 𝑋)))
10294, 101eqtrd 2775 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑀 · (-𝑁 · 𝑋)) = (𝑀 · (𝑁 · 𝑋)))
10383, 86, 1023eqtr3d 2783 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
104103ex 412 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((-𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
10518, 58, 77, 104ccased 1038 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (((𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0) ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
1064, 8, 105mp2and 699 1 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  cr 11152   · cmul 11158  -cneg 11491  0cn0 12524  cz 12611  Basecbs 17245  Mndcmnd 18760  Grpcgrp 18964  invgcminusg 18965  .gcmg 19098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-seq 14040  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-mulg 19099
This theorem is referenced by:  mulgassr  19143  odmod  19579  odmulgid  19587  odbezout  19591  gexdvdsi  19616  pgpfac1lem2  20110  pgpfac1lem3a  20111  pgpfac1lem3  20112  mulgrhm  21506  zlmlmod  21555  elrgspnlem2  33233  primrootscoprmpow  42081  primrootscoprbij  42084  primrootspoweq0  42088  aks6d1c6lem5  42159  grpods  42176  unitscyglem1  42177  unitscyglem4  42180
  Copyright terms: Public domain W3C validator