Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsideofeq Structured version   Visualization version   GIF version

Theorem outsideofeq 33149
Description: Uniqueness law for OutsideOf. Analogue of segconeq 33029. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsideofeq ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑋 = 𝑌))

Proof of Theorem outsideofeq
StepHypRef Expression
1 simp1 1117 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
2 simp21 1187 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
3 simp32 1191 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑋 ∈ (𝔼‘𝑁))
4 simp22 1188 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑅 ∈ (𝔼‘𝑁))
5 broutsideof2 33141 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑋, 𝑅⟩ ↔ (𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩))))
61, 2, 3, 4, 5syl13anc 1353 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑋, 𝑅⟩ ↔ (𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩))))
76anbi1d 621 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ↔ ((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩)))
8 simp33 1192 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑌 ∈ (𝔼‘𝑁))
9 broutsideof2 33141 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑌, 𝑅⟩ ↔ (𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩))))
101, 2, 8, 4, 9syl13anc 1353 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑌, 𝑅⟩ ↔ (𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩))))
1110anbi1d 621 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩) ↔ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)))
127, 11anbi12d 622 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) ↔ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))))
13 simpll3 1195 . . . . . . 7 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩))
14 simprl3 1201 . . . . . . 7 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩))
1513, 14jca 504 . . . . . 6 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)))
1615adantl 474 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)))
17 simpll2 1194 . . . . . 6 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑅𝐴)
1817adantl 474 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑅𝐴)
19 simp23 1189 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
20 simp31 1190 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
21 simprlr 768 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩)
22 simprrr 770 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)
231, 2, 3, 2, 8, 19, 20, 21, 22cgrtr3and 33014 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
2416, 18, 23jca32 508 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → (((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)))
25 simprll 767 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 Btwn ⟨𝐴, 𝑅⟩)
26 simprlr 768 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 Btwn ⟨𝐴, 𝑅⟩)
27 simprrr 770 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
28 midofsegid 33123 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌))
291, 2, 4, 3, 8, 28syl122anc 1360 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌))
3029adantr 473 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌))
3125, 26, 27, 30mp3and 1444 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
3231exp32 413 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
33 simprlr 768 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 Btwn ⟨𝐴, 𝑅⟩)
34 simprll 767 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑋⟩)
351, 2, 8, 4, 3, 33, 34btwnexchand 33045 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 Btwn ⟨𝐴, 𝑋⟩)
36 simprrr 770 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
371, 2, 3, 8, 35, 36endofsegidand 33105 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
3837exp32 413 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
39 simprll 767 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 Btwn ⟨𝐴, 𝑅⟩)
40 simprlr 768 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑌⟩)
411, 2, 3, 4, 8, 39, 40btwnexchand 33045 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 Btwn ⟨𝐴, 𝑌⟩)
42 simprrr 770 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
431, 2, 3, 2, 8, 42cgrcomand 33010 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑌⟩Cgr⟨𝐴, 𝑋⟩)
441, 2, 8, 3, 41, 43endofsegidand 33105 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 = 𝑋)
4544eqcomd 2777 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
4645exp32 413 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
47 simprr 761 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → 𝑋 Btwn ⟨𝐴, 𝑌⟩)
48 simplrr 766 . . . . . . . . . . . . 13 ((((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
4948adantl 474 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
501, 2, 3, 2, 8, 49cgrcomand 33010 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → ⟨𝐴, 𝑌⟩Cgr⟨𝐴, 𝑋⟩)
511, 2, 8, 3, 47, 50endofsegidand 33105 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → 𝑌 = 𝑋)
5251eqcomd 2777 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → 𝑋 = 𝑌)
5352expr 449 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ → 𝑋 = 𝑌))
54 simprr 761 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩)) → 𝑌 Btwn ⟨𝐴, 𝑋⟩)
55 simplrr 766 . . . . . . . . . . 11 ((((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
5655adantl 474 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩)) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
571, 2, 3, 8, 54, 56endofsegidand 33105 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩)) → 𝑋 = 𝑌)
5857expr 449 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → (𝑌 Btwn ⟨𝐴, 𝑋⟩ → 𝑋 = 𝑌))
59 simprrl 769 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅𝐴)
6059necomd 3015 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝐴𝑅)
61 simprll 767 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑋⟩)
62 simprlr 768 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑌⟩)
63 btwnconn1 33120 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴𝑅𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩)))
641, 2, 4, 3, 8, 63syl122anc 1360 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴𝑅𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩)))
6564adantr 473 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ((𝐴𝑅𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩)))
6660, 61, 62, 65mp3and 1444 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩))
6753, 58, 66mpjaod 847 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
6867exp32 413 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
6932, 38, 46, 68ccased 1020 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
7069imp32 411 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
7124, 70syldan 583 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑋 = 𝑌)
7271ex 405 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑋 = 𝑌))
7312, 72sylbid 232 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 834  w3a 1069   = wceq 1508  wcel 2051  wne 2960  cop 4441   class class class wbr 4925  cfv 6185  cn 11437  𝔼cee 26392   Btwn cbtwn 26393  Cgrccgr 26394  OutsideOfcoutsideof 33138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-inf2 8896  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-pre-sup 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-se 5363  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-isom 6194  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-map 8206  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-sup 8699  df-oi 8767  df-card 9160  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-2 11501  df-3 11502  df-n0 11706  df-z 11792  df-uz 12057  df-rp 12203  df-ico 12558  df-icc 12559  df-fz 12707  df-fzo 12848  df-seq 13183  df-exp 13243  df-hash 13504  df-cj 14317  df-re 14318  df-im 14319  df-sqrt 14453  df-abs 14454  df-clim 14704  df-sum 14902  df-ee 26395  df-btwn 26396  df-cgr 26397  df-ofs 33002  df-colinear 33058  df-ifs 33059  df-cgr3 33060  df-fs 33061  df-outsideof 33139
This theorem is referenced by:  outsideofeu  33150  outsidele  33151
  Copyright terms: Public domain W3C validator