Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsideofeq Structured version   Visualization version   GIF version

Theorem outsideofeq 36131
Description: Uniqueness law for OutsideOf. Analogue of segconeq 36011. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsideofeq ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑋 = 𝑌))

Proof of Theorem outsideofeq
StepHypRef Expression
1 simp1 1137 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
2 simp21 1207 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
3 simp32 1211 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑋 ∈ (𝔼‘𝑁))
4 simp22 1208 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑅 ∈ (𝔼‘𝑁))
5 broutsideof2 36123 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑋, 𝑅⟩ ↔ (𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩))))
61, 2, 3, 4, 5syl13anc 1374 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑋, 𝑅⟩ ↔ (𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩))))
76anbi1d 631 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ↔ ((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩)))
8 simp33 1212 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑌 ∈ (𝔼‘𝑁))
9 broutsideof2 36123 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑌, 𝑅⟩ ↔ (𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩))))
101, 2, 8, 4, 9syl13anc 1374 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑌, 𝑅⟩ ↔ (𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩))))
1110anbi1d 631 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩) ↔ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)))
127, 11anbi12d 632 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) ↔ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))))
13 simpll3 1215 . . . . . . 7 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩))
14 simprl3 1221 . . . . . . 7 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩))
1513, 14jca 511 . . . . . 6 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)))
1615adantl 481 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)))
17 simpll2 1214 . . . . . 6 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑅𝐴)
1817adantl 481 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑅𝐴)
19 simp23 1209 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
20 simp31 1210 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
21 simprlr 780 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩)
22 simprrr 782 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)
231, 2, 3, 2, 8, 19, 20, 21, 22cgrtr3and 35996 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
2416, 18, 23jca32 515 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → (((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)))
25 simprll 779 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 Btwn ⟨𝐴, 𝑅⟩)
26 simprlr 780 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 Btwn ⟨𝐴, 𝑅⟩)
27 simprrr 782 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
28 midofsegid 36105 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌))
291, 2, 4, 3, 8, 28syl122anc 1381 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌))
3029adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌))
3125, 26, 27, 30mp3and 1466 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
3231exp32 420 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
33 simprlr 780 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 Btwn ⟨𝐴, 𝑅⟩)
34 simprll 779 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑋⟩)
351, 2, 8, 4, 3, 33, 34btwnexchand 36027 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 Btwn ⟨𝐴, 𝑋⟩)
36 simprrr 782 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
371, 2, 3, 8, 35, 36endofsegidand 36087 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
3837exp32 420 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
39 simprll 779 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 Btwn ⟨𝐴, 𝑅⟩)
40 simprlr 780 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑌⟩)
411, 2, 3, 4, 8, 39, 40btwnexchand 36027 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 Btwn ⟨𝐴, 𝑌⟩)
42 simprrr 782 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
431, 2, 3, 2, 8, 42cgrcomand 35992 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑌⟩Cgr⟨𝐴, 𝑋⟩)
441, 2, 8, 3, 41, 43endofsegidand 36087 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 = 𝑋)
4544eqcomd 2743 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
4645exp32 420 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
47 simprr 773 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → 𝑋 Btwn ⟨𝐴, 𝑌⟩)
48 simplrr 778 . . . . . . . . . . . . 13 ((((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
4948adantl 481 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
501, 2, 3, 2, 8, 49cgrcomand 35992 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → ⟨𝐴, 𝑌⟩Cgr⟨𝐴, 𝑋⟩)
511, 2, 8, 3, 47, 50endofsegidand 36087 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → 𝑌 = 𝑋)
5251eqcomd 2743 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → 𝑋 = 𝑌)
5352expr 456 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ → 𝑋 = 𝑌))
54 simprr 773 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩)) → 𝑌 Btwn ⟨𝐴, 𝑋⟩)
55 simplrr 778 . . . . . . . . . . 11 ((((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
5655adantl 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩)) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
571, 2, 3, 8, 54, 56endofsegidand 36087 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩)) → 𝑋 = 𝑌)
5857expr 456 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → (𝑌 Btwn ⟨𝐴, 𝑋⟩ → 𝑋 = 𝑌))
59 simprrl 781 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅𝐴)
6059necomd 2996 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝐴𝑅)
61 simprll 779 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑋⟩)
62 simprlr 780 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑌⟩)
63 btwnconn1 36102 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴𝑅𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩)))
641, 2, 4, 3, 8, 63syl122anc 1381 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴𝑅𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩)))
6564adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ((𝐴𝑅𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩)))
6660, 61, 62, 65mp3and 1466 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩))
6753, 58, 66mpjaod 861 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
6867exp32 420 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
6932, 38, 46, 68ccased 1039 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
7069imp32 418 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
7124, 70syldan 591 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑋 = 𝑌)
7271ex 412 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑋 = 𝑌))
7312, 72sylbid 240 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  cop 4632   class class class wbr 5143  cfv 6561  cn 12266  𝔼cee 28903   Btwn cbtwn 28904  Cgrccgr 28905  OutsideOfcoutsideof 36120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-ee 28906  df-btwn 28907  df-cgr 28908  df-ofs 35984  df-colinear 36040  df-ifs 36041  df-cgr3 36042  df-fs 36043  df-outsideof 36121
This theorem is referenced by:  outsideofeu  36132  outsidele  36133
  Copyright terms: Public domain W3C validator