Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsideofeq Structured version   Visualization version   GIF version

Theorem outsideofeq 34477
Description: Uniqueness law for OutsideOf. Analogue of segconeq 34357. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsideofeq ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑋 = 𝑌))

Proof of Theorem outsideofeq
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
2 simp21 1206 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
3 simp32 1210 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑋 ∈ (𝔼‘𝑁))
4 simp22 1207 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑅 ∈ (𝔼‘𝑁))
5 broutsideof2 34469 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑋, 𝑅⟩ ↔ (𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩))))
61, 2, 3, 4, 5syl13anc 1372 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑋, 𝑅⟩ ↔ (𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩))))
76anbi1d 631 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ↔ ((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩)))
8 simp33 1211 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑌 ∈ (𝔼‘𝑁))
9 broutsideof2 34469 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑌, 𝑅⟩ ↔ (𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩))))
101, 2, 8, 4, 9syl13anc 1372 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑌, 𝑅⟩ ↔ (𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩))))
1110anbi1d 631 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩) ↔ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)))
127, 11anbi12d 632 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) ↔ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))))
13 simpll3 1214 . . . . . . 7 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩))
14 simprl3 1220 . . . . . . 7 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩))
1513, 14jca 513 . . . . . 6 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)))
1615adantl 483 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)))
17 simpll2 1213 . . . . . 6 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑅𝐴)
1817adantl 483 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑅𝐴)
19 simp23 1208 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
20 simp31 1209 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
21 simprlr 778 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩)
22 simprrr 780 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)
231, 2, 3, 2, 8, 19, 20, 21, 22cgrtr3and 34342 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
2416, 18, 23jca32 517 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → (((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)))
25 simprll 777 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 Btwn ⟨𝐴, 𝑅⟩)
26 simprlr 778 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 Btwn ⟨𝐴, 𝑅⟩)
27 simprrr 780 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
28 midofsegid 34451 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌))
291, 2, 4, 3, 8, 28syl122anc 1379 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌))
3029adantr 482 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌))
3125, 26, 27, 30mp3and 1464 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
3231exp32 422 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
33 simprlr 778 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 Btwn ⟨𝐴, 𝑅⟩)
34 simprll 777 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑋⟩)
351, 2, 8, 4, 3, 33, 34btwnexchand 34373 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 Btwn ⟨𝐴, 𝑋⟩)
36 simprrr 780 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
371, 2, 3, 8, 35, 36endofsegidand 34433 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
3837exp32 422 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
39 simprll 777 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 Btwn ⟨𝐴, 𝑅⟩)
40 simprlr 778 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑌⟩)
411, 2, 3, 4, 8, 39, 40btwnexchand 34373 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 Btwn ⟨𝐴, 𝑌⟩)
42 simprrr 780 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
431, 2, 3, 2, 8, 42cgrcomand 34338 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑌⟩Cgr⟨𝐴, 𝑋⟩)
441, 2, 8, 3, 41, 43endofsegidand 34433 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 = 𝑋)
4544eqcomd 2742 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
4645exp32 422 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
47 simprr 771 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → 𝑋 Btwn ⟨𝐴, 𝑌⟩)
48 simplrr 776 . . . . . . . . . . . . 13 ((((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
4948adantl 483 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
501, 2, 3, 2, 8, 49cgrcomand 34338 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → ⟨𝐴, 𝑌⟩Cgr⟨𝐴, 𝑋⟩)
511, 2, 8, 3, 47, 50endofsegidand 34433 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → 𝑌 = 𝑋)
5251eqcomd 2742 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → 𝑋 = 𝑌)
5352expr 458 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ → 𝑋 = 𝑌))
54 simprr 771 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩)) → 𝑌 Btwn ⟨𝐴, 𝑋⟩)
55 simplrr 776 . . . . . . . . . . 11 ((((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
5655adantl 483 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩)) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
571, 2, 3, 8, 54, 56endofsegidand 34433 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩)) → 𝑋 = 𝑌)
5857expr 458 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → (𝑌 Btwn ⟨𝐴, 𝑋⟩ → 𝑋 = 𝑌))
59 simprrl 779 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅𝐴)
6059necomd 2997 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝐴𝑅)
61 simprll 777 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑋⟩)
62 simprlr 778 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑌⟩)
63 btwnconn1 34448 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴𝑅𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩)))
641, 2, 4, 3, 8, 63syl122anc 1379 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴𝑅𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩)))
6564adantr 482 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ((𝐴𝑅𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩)))
6660, 61, 62, 65mp3and 1464 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩))
6753, 58, 66mpjaod 858 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
6867exp32 422 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
6932, 38, 46, 68ccased 1037 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
7069imp32 420 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
7124, 70syldan 592 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑋 = 𝑌)
7271ex 414 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑋 = 𝑌))
7312, 72sylbid 239 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 845  w3a 1087   = wceq 1539  wcel 2104  wne 2941  cop 4571   class class class wbr 5081  cfv 6458  cn 12019  𝔼cee 27301   Btwn cbtwn 27302  Cgrccgr 27303  OutsideOfcoutsideof 34466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9443  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-sup 9245  df-oi 9313  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-n0 12280  df-z 12366  df-uz 12629  df-rp 12777  df-ico 13131  df-icc 13132  df-fz 13286  df-fzo 13429  df-seq 13768  df-exp 13829  df-hash 14091  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-clim 15242  df-sum 15443  df-ee 27304  df-btwn 27305  df-cgr 27306  df-ofs 34330  df-colinear 34386  df-ifs 34387  df-cgr3 34388  df-fs 34389  df-outsideof 34467
This theorem is referenced by:  outsideofeu  34478  outsidele  34479
  Copyright terms: Public domain W3C validator