Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsideofeq Structured version   Visualization version   GIF version

Theorem outsideofeq 34411
Description: Uniqueness law for OutsideOf. Analogue of segconeq 34291. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsideofeq ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑋 = 𝑌))

Proof of Theorem outsideofeq
StepHypRef Expression
1 simp1 1134 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
2 simp21 1204 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
3 simp32 1208 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑋 ∈ (𝔼‘𝑁))
4 simp22 1205 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑅 ∈ (𝔼‘𝑁))
5 broutsideof2 34403 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑋, 𝑅⟩ ↔ (𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩))))
61, 2, 3, 4, 5syl13anc 1370 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑋, 𝑅⟩ ↔ (𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩))))
76anbi1d 629 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ↔ ((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩)))
8 simp33 1209 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝑌 ∈ (𝔼‘𝑁))
9 broutsideof2 34403 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑌, 𝑅⟩ ↔ (𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩))))
101, 2, 8, 4, 9syl13anc 1370 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑌, 𝑅⟩ ↔ (𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩))))
1110anbi1d 629 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩) ↔ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)))
127, 11anbi12d 630 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) ↔ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))))
13 simpll3 1212 . . . . . . 7 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩))
14 simprl3 1218 . . . . . . 7 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩))
1513, 14jca 511 . . . . . 6 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)))
1615adantl 481 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)))
17 simpll2 1211 . . . . . 6 ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑅𝐴)
1817adantl 481 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑅𝐴)
19 simp23 1206 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
20 simp31 1207 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
21 simprlr 776 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩)
22 simprrr 778 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)
231, 2, 3, 2, 8, 19, 20, 21, 22cgrtr3and 34276 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
2416, 18, 23jca32 515 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → (((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)))
25 simprll 775 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 Btwn ⟨𝐴, 𝑅⟩)
26 simprlr 776 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 Btwn ⟨𝐴, 𝑅⟩)
27 simprrr 778 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
28 midofsegid 34385 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌))
291, 2, 4, 3, 8, 28syl122anc 1377 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌))
3029adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌))
3125, 26, 27, 30mp3and 1462 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
3231exp32 420 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
33 simprlr 776 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 Btwn ⟨𝐴, 𝑅⟩)
34 simprll 775 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑋⟩)
351, 2, 8, 4, 3, 33, 34btwnexchand 34307 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 Btwn ⟨𝐴, 𝑋⟩)
36 simprrr 778 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
371, 2, 3, 8, 35, 36endofsegidand 34367 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
3837exp32 420 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑌 Btwn ⟨𝐴, 𝑅⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
39 simprll 775 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 Btwn ⟨𝐴, 𝑅⟩)
40 simprlr 776 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑌⟩)
411, 2, 3, 4, 8, 39, 40btwnexchand 34307 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 Btwn ⟨𝐴, 𝑌⟩)
42 simprrr 778 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
431, 2, 3, 2, 8, 42cgrcomand 34272 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ⟨𝐴, 𝑌⟩Cgr⟨𝐴, 𝑋⟩)
441, 2, 8, 3, 41, 43endofsegidand 34367 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑌 = 𝑋)
4544eqcomd 2745 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
4645exp32 420 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
47 simprr 769 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → 𝑋 Btwn ⟨𝐴, 𝑌⟩)
48 simplrr 774 . . . . . . . . . . . . 13 ((((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
4948adantl 481 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
501, 2, 3, 2, 8, 49cgrcomand 34272 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → ⟨𝐴, 𝑌⟩Cgr⟨𝐴, 𝑋⟩)
511, 2, 8, 3, 47, 50endofsegidand 34367 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → 𝑌 = 𝑋)
5251eqcomd 2745 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑋 Btwn ⟨𝐴, 𝑌⟩)) → 𝑋 = 𝑌)
5352expr 456 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ → 𝑋 = 𝑌))
54 simprr 769 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩)) → 𝑌 Btwn ⟨𝐴, 𝑋⟩)
55 simplrr 774 . . . . . . . . . . 11 ((((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
5655adantl 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩)) → ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)
571, 2, 3, 8, 54, 56endofsegidand 34367 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩)) ∧ 𝑌 Btwn ⟨𝐴, 𝑋⟩)) → 𝑋 = 𝑌)
5857expr 456 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → (𝑌 Btwn ⟨𝐴, 𝑋⟩ → 𝑋 = 𝑌))
59 simprrl 777 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅𝐴)
6059necomd 3000 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝐴𝑅)
61 simprll 775 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑋⟩)
62 simprlr 776 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑅 Btwn ⟨𝐴, 𝑌⟩)
63 btwnconn1 34382 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴𝑅𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩)))
641, 2, 4, 3, 8, 63syl122anc 1377 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝐴𝑅𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩)))
6564adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → ((𝐴𝑅𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩)))
6660, 61, 62, 65mp3and 1462 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → (𝑋 Btwn ⟨𝐴, 𝑌⟩ ∨ 𝑌 Btwn ⟨𝐴, 𝑋⟩))
6753, 58, 66mpjaod 856 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
6867exp32 420 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑅 Btwn ⟨𝐴, 𝑋⟩ ∧ 𝑅 Btwn ⟨𝐴, 𝑌⟩) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
6932, 38, 46, 68ccased 1035 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) → ((𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩) → 𝑋 = 𝑌)))
7069imp32 418 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩) ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ (𝑅𝐴 ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐴, 𝑌⟩))) → 𝑋 = 𝑌)
7124, 70syldan 590 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) ∧ (((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑋 = 𝑌)
7271ex 412 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((((𝑋𝐴𝑅𝐴 ∧ (𝑋 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑋⟩)) ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ ((𝑌𝐴𝑅𝐴 ∧ (𝑌 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑌⟩)) ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑋 = 𝑌))
7312, 72sylbid 239 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf⟨𝑋, 𝑅⟩ ∧ ⟨𝐴, 𝑋⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑌, 𝑅⟩ ∧ ⟨𝐴, 𝑌⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1541  wcel 2109  wne 2944  cop 4572   class class class wbr 5078  cfv 6430  cn 11956  𝔼cee 27237   Btwn cbtwn 27238  Cgrccgr 27239  OutsideOfcoutsideof 34400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-sup 9162  df-oi 9230  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-n0 12217  df-z 12303  df-uz 12565  df-rp 12713  df-ico 13067  df-icc 13068  df-fz 13222  df-fzo 13365  df-seq 13703  df-exp 13764  df-hash 14026  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-clim 15178  df-sum 15379  df-ee 27240  df-btwn 27241  df-cgr 27242  df-ofs 34264  df-colinear 34320  df-ifs 34321  df-cgr3 34322  df-fs 34323  df-outsideof 34401
This theorem is referenced by:  outsideofeu  34412  outsidele  34413
  Copyright terms: Public domain W3C validator