Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme7a Structured version   Visualization version   GIF version

Theorem cdleme7a 40267
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 40272 and cdleme7 40273. (Contributed by NM, 7-Jun-2012.)
Hypotheses
Ref Expression
cdleme4.l = (le‘𝐾)
cdleme4.j = (join‘𝐾)
cdleme4.m = (meet‘𝐾)
cdleme4.a 𝐴 = (Atoms‘𝐾)
cdleme4.h 𝐻 = (LHyp‘𝐾)
cdleme4.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme4.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme4.g 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
cdleme7.v 𝑉 = ((𝑅 𝑆) 𝑊)
Assertion
Ref Expression
cdleme7a 𝐺 = ((𝑃 𝑄) (𝐹 𝑉))

Proof of Theorem cdleme7a
StepHypRef Expression
1 cdleme4.g . 2 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
2 cdleme7.v . . . 4 𝑉 = ((𝑅 𝑆) 𝑊)
32oveq2i 7421 . . 3 (𝐹 𝑉) = (𝐹 ((𝑅 𝑆) 𝑊))
43oveq2i 7421 . 2 ((𝑃 𝑄) (𝐹 𝑉)) = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
51, 4eqtr4i 2762 1 𝐺 = ((𝑃 𝑄) (𝐹 𝑉))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cfv 6536  (class class class)co 7410  lecple 17283  joincjn 18328  meetcmee 18329  Atomscatm 39286  LHypclh 40008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413
This theorem is referenced by:  cdleme7d  40270  cdleme17a  40310
  Copyright terms: Public domain W3C validator