Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme7a | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 37999 and cdleme7 38000. (Contributed by NM, 7-Jun-2012.) |
Ref | Expression |
---|---|
cdleme4.l | ⊢ ≤ = (le‘𝐾) |
cdleme4.j | ⊢ ∨ = (join‘𝐾) |
cdleme4.m | ⊢ ∧ = (meet‘𝐾) |
cdleme4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme4.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme4.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdleme4.f | ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
cdleme4.g | ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
cdleme7.v | ⊢ 𝑉 = ((𝑅 ∨ 𝑆) ∧ 𝑊) |
Ref | Expression |
---|---|
cdleme7a | ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme4.g | . 2 ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) | |
2 | cdleme7.v | . . . 4 ⊢ 𝑉 = ((𝑅 ∨ 𝑆) ∧ 𝑊) | |
3 | 2 | oveq2i 7224 | . . 3 ⊢ (𝐹 ∨ 𝑉) = (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) |
4 | 3 | oveq2i 7224 | . 2 ⊢ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝑉)) = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
5 | 1, 4 | eqtr4i 2768 | 1 ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ‘cfv 6380 (class class class)co 7213 lecple 16809 joincjn 17818 meetcmee 17819 Atomscatm 37014 LHypclh 37735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-iota 6338 df-fv 6388 df-ov 7216 |
This theorem is referenced by: cdleme7d 37997 cdleme17a 38037 |
Copyright terms: Public domain | W3C validator |