Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme7a | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 38262 and cdleme7 38263. (Contributed by NM, 7-Jun-2012.) |
Ref | Expression |
---|---|
cdleme4.l | ⊢ ≤ = (le‘𝐾) |
cdleme4.j | ⊢ ∨ = (join‘𝐾) |
cdleme4.m | ⊢ ∧ = (meet‘𝐾) |
cdleme4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme4.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme4.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdleme4.f | ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
cdleme4.g | ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
cdleme7.v | ⊢ 𝑉 = ((𝑅 ∨ 𝑆) ∧ 𝑊) |
Ref | Expression |
---|---|
cdleme7a | ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme4.g | . 2 ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) | |
2 | cdleme7.v | . . . 4 ⊢ 𝑉 = ((𝑅 ∨ 𝑆) ∧ 𝑊) | |
3 | 2 | oveq2i 7286 | . . 3 ⊢ (𝐹 ∨ 𝑉) = (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) |
4 | 3 | oveq2i 7286 | . 2 ⊢ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝑉)) = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
5 | 1, 4 | eqtr4i 2769 | 1 ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ‘cfv 6433 (class class class)co 7275 lecple 16969 joincjn 18029 meetcmee 18030 Atomscatm 37277 LHypclh 37998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: cdleme7d 38260 cdleme17a 38300 |
Copyright terms: Public domain | W3C validator |