Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme7a Structured version   Visualization version   GIF version

Theorem cdleme7a 39626
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 39631 and cdleme7 39632. (Contributed by NM, 7-Jun-2012.)
Hypotheses
Ref Expression
cdleme4.l ≀ = (leβ€˜πΎ)
cdleme4.j ∨ = (joinβ€˜πΎ)
cdleme4.m ∧ = (meetβ€˜πΎ)
cdleme4.a 𝐴 = (Atomsβ€˜πΎ)
cdleme4.h 𝐻 = (LHypβ€˜πΎ)
cdleme4.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme4.f 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
cdleme4.g 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))
cdleme7.v 𝑉 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
Assertion
Ref Expression
cdleme7a 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝑉))

Proof of Theorem cdleme7a
StepHypRef Expression
1 cdleme4.g . 2 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))
2 cdleme7.v . . . 4 𝑉 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
32oveq2i 7415 . . 3 (𝐹 ∨ 𝑉) = (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))
43oveq2i 7415 . 2 ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝑉)) = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))
51, 4eqtr4i 2757 1 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝑉))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  β€˜cfv 6536  (class class class)co 7404  lecple 17210  joincjn 18273  meetcmee 18274  Atomscatm 38645  LHypclh 39367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-iota 6488  df-fv 6544  df-ov 7407
This theorem is referenced by:  cdleme7d  39629  cdleme17a  39669
  Copyright terms: Public domain W3C validator