Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme7a Structured version   Visualization version   GIF version

Theorem cdleme7a 38257
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 38262 and cdleme7 38263. (Contributed by NM, 7-Jun-2012.)
Hypotheses
Ref Expression
cdleme4.l = (le‘𝐾)
cdleme4.j = (join‘𝐾)
cdleme4.m = (meet‘𝐾)
cdleme4.a 𝐴 = (Atoms‘𝐾)
cdleme4.h 𝐻 = (LHyp‘𝐾)
cdleme4.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme4.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme4.g 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
cdleme7.v 𝑉 = ((𝑅 𝑆) 𝑊)
Assertion
Ref Expression
cdleme7a 𝐺 = ((𝑃 𝑄) (𝐹 𝑉))

Proof of Theorem cdleme7a
StepHypRef Expression
1 cdleme4.g . 2 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
2 cdleme7.v . . . 4 𝑉 = ((𝑅 𝑆) 𝑊)
32oveq2i 7286 . . 3 (𝐹 𝑉) = (𝐹 ((𝑅 𝑆) 𝑊))
43oveq2i 7286 . 2 ((𝑃 𝑄) (𝐹 𝑉)) = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
51, 4eqtr4i 2769 1 𝐺 = ((𝑃 𝑄) (𝐹 𝑉))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cfv 6433  (class class class)co 7275  lecple 16969  joincjn 18029  meetcmee 18030  Atomscatm 37277  LHypclh 37998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  cdleme7d  38260  cdleme17a  38300
  Copyright terms: Public domain W3C validator