Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme7a Structured version   Visualization version   GIF version

Theorem cdleme7a 40352
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 40357 and cdleme7 40358. (Contributed by NM, 7-Jun-2012.)
Hypotheses
Ref Expression
cdleme4.l = (le‘𝐾)
cdleme4.j = (join‘𝐾)
cdleme4.m = (meet‘𝐾)
cdleme4.a 𝐴 = (Atoms‘𝐾)
cdleme4.h 𝐻 = (LHyp‘𝐾)
cdleme4.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme4.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme4.g 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
cdleme7.v 𝑉 = ((𝑅 𝑆) 𝑊)
Assertion
Ref Expression
cdleme7a 𝐺 = ((𝑃 𝑄) (𝐹 𝑉))

Proof of Theorem cdleme7a
StepHypRef Expression
1 cdleme4.g . 2 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
2 cdleme7.v . . . 4 𝑉 = ((𝑅 𝑆) 𝑊)
32oveq2i 7357 . . 3 (𝐹 𝑉) = (𝐹 ((𝑅 𝑆) 𝑊))
43oveq2i 7357 . 2 ((𝑃 𝑄) (𝐹 𝑉)) = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
51, 4eqtr4i 2757 1 𝐺 = ((𝑃 𝑄) (𝐹 𝑉))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cfv 6481  (class class class)co 7346  lecple 17168  joincjn 18217  meetcmee 18218  Atomscatm 39372  LHypclh 40093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349
This theorem is referenced by:  cdleme7d  40355  cdleme17a  40395
  Copyright terms: Public domain W3C validator