Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme7a Structured version   Visualization version   GIF version

Theorem cdleme7a 38184
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 38189 and cdleme7 38190. (Contributed by NM, 7-Jun-2012.)
Hypotheses
Ref Expression
cdleme4.l = (le‘𝐾)
cdleme4.j = (join‘𝐾)
cdleme4.m = (meet‘𝐾)
cdleme4.a 𝐴 = (Atoms‘𝐾)
cdleme4.h 𝐻 = (LHyp‘𝐾)
cdleme4.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme4.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme4.g 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
cdleme7.v 𝑉 = ((𝑅 𝑆) 𝑊)
Assertion
Ref Expression
cdleme7a 𝐺 = ((𝑃 𝑄) (𝐹 𝑉))

Proof of Theorem cdleme7a
StepHypRef Expression
1 cdleme4.g . 2 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
2 cdleme7.v . . . 4 𝑉 = ((𝑅 𝑆) 𝑊)
32oveq2i 7266 . . 3 (𝐹 𝑉) = (𝐹 ((𝑅 𝑆) 𝑊))
43oveq2i 7266 . 2 ((𝑃 𝑄) (𝐹 𝑉)) = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
51, 4eqtr4i 2769 1 𝐺 = ((𝑃 𝑄) (𝐹 𝑉))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cfv 6418  (class class class)co 7255  lecple 16895  joincjn 17944  meetcmee 17945  Atomscatm 37204  LHypclh 37925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  cdleme7d  38187  cdleme17a  38227
  Copyright terms: Public domain W3C validator