![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme7a | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 39851 and cdleme7 39852. (Contributed by NM, 7-Jun-2012.) |
Ref | Expression |
---|---|
cdleme4.l | ⊢ ≤ = (le‘𝐾) |
cdleme4.j | ⊢ ∨ = (join‘𝐾) |
cdleme4.m | ⊢ ∧ = (meet‘𝐾) |
cdleme4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme4.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme4.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdleme4.f | ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
cdleme4.g | ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
cdleme7.v | ⊢ 𝑉 = ((𝑅 ∨ 𝑆) ∧ 𝑊) |
Ref | Expression |
---|---|
cdleme7a | ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme4.g | . 2 ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) | |
2 | cdleme7.v | . . . 4 ⊢ 𝑉 = ((𝑅 ∨ 𝑆) ∧ 𝑊) | |
3 | 2 | oveq2i 7430 | . . 3 ⊢ (𝐹 ∨ 𝑉) = (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) |
4 | 3 | oveq2i 7430 | . 2 ⊢ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝑉)) = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
5 | 1, 4 | eqtr4i 2756 | 1 ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ‘cfv 6549 (class class class)co 7419 lecple 17243 joincjn 18306 meetcmee 18307 Atomscatm 38865 LHypclh 39587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-iota 6501 df-fv 6557 df-ov 7422 |
This theorem is referenced by: cdleme7d 39849 cdleme17a 39889 |
Copyright terms: Public domain | W3C validator |