| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme7a | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 40225 and cdleme7 40226. (Contributed by NM, 7-Jun-2012.) |
| Ref | Expression |
|---|---|
| cdleme4.l | ⊢ ≤ = (le‘𝐾) |
| cdleme4.j | ⊢ ∨ = (join‘𝐾) |
| cdleme4.m | ⊢ ∧ = (meet‘𝐾) |
| cdleme4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdleme4.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdleme4.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| cdleme4.f | ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
| cdleme4.g | ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
| cdleme7.v | ⊢ 𝑉 = ((𝑅 ∨ 𝑆) ∧ 𝑊) |
| Ref | Expression |
|---|---|
| cdleme7a | ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme4.g | . 2 ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) | |
| 2 | cdleme7.v | . . . 4 ⊢ 𝑉 = ((𝑅 ∨ 𝑆) ∧ 𝑊) | |
| 3 | 2 | oveq2i 7424 | . . 3 ⊢ (𝐹 ∨ 𝑉) = (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) |
| 4 | 3 | oveq2i 7424 | . 2 ⊢ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝑉)) = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
| 5 | 1, 4 | eqtr4i 2760 | 1 ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ‘cfv 6541 (class class class)co 7413 lecple 17281 joincjn 18328 meetcmee 18329 Atomscatm 39239 LHypclh 39961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 |
| This theorem is referenced by: cdleme7d 40223 cdleme17a 40263 |
| Copyright terms: Public domain | W3C validator |