| Metamath
Proof Explorer Theorem List (p. 398 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dalem35 39701 | Lemma for dath 39730. Analogue of dalem24 39691 for 𝐼. (Contributed by NM, 3-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝐼 ≤ 𝑌) | ||
| Theorem | dalem36 39702 | Lemma for dath 39730. Analogue of dalem27 39693 for 𝐼. (Contributed by NM, 8-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ≤ (𝐼 ∨ 𝑅)) | ||
| Theorem | dalem37 39703 | Lemma for dath 39730. Analogue of dalem28 39694 for 𝐼. (Contributed by NM, 4-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑅 ≤ (𝐼 ∨ 𝑐)) | ||
| Theorem | dalem38 39704 | Lemma for dath 39730. Plane 𝑌 belongs to the 3-dimensional volume 𝐺𝐻𝐼𝑐. (Contributed by NM, 5-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑌 ≤ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∨ 𝑐)) | ||
| Theorem | dalem39 39705 | Lemma for dath 39730. Auxiliary atoms 𝐺, 𝐻, and 𝐼 are not colinear. (Contributed by NM, 4-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝐻 ≤ (𝐼 ∨ 𝐺)) | ||
| Theorem | dalem40 39706 | Lemma for dath 39730. Analogue of dalem39 39705 for 𝐼. (Contributed by NM, 4-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝐼 ≤ (𝐺 ∨ 𝐻)) | ||
| Theorem | dalem41 39707 | Lemma for dath 39730. (Contributed by NM, 4-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ≠ 𝐻) | ||
| Theorem | dalem42 39708 | Lemma for dath 39730. Auxiliary atoms 𝐺𝐻𝐼 form a plane. (Contributed by NM, 4-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂) | ||
| Theorem | dalem43 39709 | Lemma for dath 39730. Planes 𝐺𝐻𝐼 and 𝑌 are different. (Contributed by NM, 8-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∨ 𝐼) ≠ 𝑌) | ||
| Theorem | dalem44 39710 | Lemma for dath 39730. Dummy center of perspectivity 𝑐 lies outside of plane 𝐺𝐻𝐼. (Contributed by NM, 16-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑐 ≤ ((𝐺 ∨ 𝐻) ∨ 𝐼)) | ||
| Theorem | dalem45 39711 | Lemma for dath 39730. Dummy center of perspectivity 𝑐 is not on the line 𝐺𝐻. (Contributed by NM, 16-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑐 ≤ (𝐺 ∨ 𝐻)) | ||
| Theorem | dalem46 39712 | Lemma for dath 39730. Analogue of dalem45 39711 for 𝐻𝐼. (Contributed by NM, 16-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑐 ≤ (𝐻 ∨ 𝐼)) | ||
| Theorem | dalem47 39713 | Lemma for dath 39730. Analogue of dalem45 39711 for 𝐼𝐺. (Contributed by NM, 16-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) | ||
| Theorem | dalem48 39714 | Lemma for dath 39730. Analogue of dalem45 39711 for 𝑃𝑄. (Contributed by NM, 16-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ (𝑃 ∨ 𝑄)) | ||
| Theorem | dalem49 39715 | Lemma for dath 39730. Analogue of dalem45 39711 for 𝑄𝑅. (Contributed by NM, 16-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ (𝑄 ∨ 𝑅)) | ||
| Theorem | dalem50 39716 | Lemma for dath 39730. Analogue of dalem45 39711 for 𝑅𝑃. (Contributed by NM, 16-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) | ||
| Theorem | dalem51 39717 | Lemma for dath 39730. Construct the condition 𝜑 with 𝑐, 𝐺𝐻𝐼, and 𝑌 in place of 𝐶, 𝑌, and 𝑍 respectively. This lets us reuse the special case of Desargues's theorem where 𝑌 ≠ 𝑍, to eventually prove the case where 𝑌 = 𝑍. (Contributed by NM, 16-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) ∧ (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅)))) ∧ ((𝐺 ∨ 𝐻) ∨ 𝐼) ≠ 𝑌)) | ||
| Theorem | dalem52 39718 | Lemma for dath 39730. Lines 𝐺𝐻 and 𝑃𝑄 intersect at an atom. (Contributed by NM, 8-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴) | ||
| Theorem | dalem53 39719 | Lemma for dath 39730. The auxiliary axis of perspectivity 𝐵 is a line (analogous to the actual axis of perspectivity 𝑋 in dalem15 39672. (Contributed by NM, 8-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) & ⊢ 𝐵 = (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ 𝑌) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐵 ∈ 𝑁) | ||
| Theorem | dalem54 39720 | Lemma for dath 39730. Line 𝐺𝐻 intersects the auxiliary axis of perspectivity 𝐵. (Contributed by NM, 8-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) & ⊢ 𝐵 = (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ 𝑌) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∧ 𝐵) ∈ 𝐴) | ||
| Theorem | dalem55 39721 | Lemma for dath 39730. Lines 𝐺𝐻 and 𝑃𝑄 intersect at the auxiliary line 𝐵 (later shown to be an axis of perspectivity; see dalem60 39726). (Contributed by NM, 8-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) & ⊢ 𝐵 = (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ 𝑌) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) = ((𝐺 ∨ 𝐻) ∧ 𝐵)) | ||
| Theorem | dalem56 39722 | Lemma for dath 39730. Analogue of dalem55 39721 for line 𝑆𝑇. (Contributed by NM, 8-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) & ⊢ 𝐵 = (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ 𝑌) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∧ (𝑆 ∨ 𝑇)) = ((𝐺 ∨ 𝐻) ∧ 𝐵)) | ||
| Theorem | dalem57 39723 | Lemma for dath 39730. Axis of perspectivity point 𝐷 is on the auxiliary line 𝐵. (Contributed by NM, 9-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) & ⊢ 𝐵 = (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ 𝑌) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐷 ≤ 𝐵) | ||
| Theorem | dalem58 39724 | Lemma for dath 39730. Analogue of dalem57 39723 for 𝐸. (Contributed by NM, 10-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐸 = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) & ⊢ 𝐵 = (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ 𝑌) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐸 ≤ 𝐵) | ||
| Theorem | dalem59 39725 | Lemma for dath 39730. Analogue of dalem57 39723 for 𝐹. (Contributed by NM, 10-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐹 = ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) & ⊢ 𝐵 = (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ 𝑌) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐹 ≤ 𝐵) | ||
| Theorem | dalem60 39726 | Lemma for dath 39730. 𝐵 is an axis of perspectivity (almost). (Contributed by NM, 11-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) & ⊢ 𝐸 = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) & ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) & ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) & ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) & ⊢ 𝐵 = (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ 𝑌) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐷 ∨ 𝐸) = 𝐵) | ||
| Theorem | dalem61 39727 | Lemma for dath 39730. Show that atoms 𝐷, 𝐸, and 𝐹 lie on the same line (axis of perspectivity). Eliminate hypotheses containing dummy atoms 𝑐 and 𝑑. (Contributed by NM, 11-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) & ⊢ 𝐸 = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) & ⊢ 𝐹 = ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐹 ≤ (𝐷 ∨ 𝐸)) | ||
| Theorem | dalem62 39728 | Lemma for dath 39730. Eliminate the condition 𝜓 containing dummy variables 𝑐 and 𝑑. (Contributed by NM, 11-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) & ⊢ 𝐸 = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) & ⊢ 𝐹 = ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ⇒ ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝐹 ≤ (𝐷 ∨ 𝐸)) | ||
| Theorem | dalem63 39729 | Lemma for dath 39730. Combine the cases where 𝑌 and 𝑍 are different planes with the case where 𝑌 and 𝑍 are the same plane. (Contributed by NM, 11-Aug-2012.) |
| ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) & ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) & ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) & ⊢ 𝐸 = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) & ⊢ 𝐹 = ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ⇒ ⊢ (𝜑 → 𝐹 ≤ (𝐷 ∨ 𝐸)) | ||
| Theorem | dath 39730 |
Desargues's theorem of projective geometry (proved for a Hilbert
lattice). Assume each triple of atoms (points) 𝑃𝑄𝑅 and 𝑆𝑇𝑈
forms a triangle (i.e. determines a plane). Assume that lines 𝑃𝑆,
𝑄𝑇, and 𝑅𝑈 meet at a "center of
perspectivity" 𝐶. (We
also assume that 𝐶 is not on any of the 6 lines forming
the two
triangles.) Then the atoms 𝐷 = (𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇),
𝐸 =
(𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈),
𝐹 =
(𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆) are colinear, forming an "axis
of
perspectivity".
Our proof roughly follows Theorem 2.7.1, p. 78 in Beutelspacher and Rosenbaum, Projective Geometry: From Foundations to Applications, Cambridge University Press (1988). Unlike them, we do not assume that 𝐶 is an atom to make this theorem slightly more general for easier future use. However, we prove that 𝐶 must be an atom in dalemcea 39654. For a visual demonstration, see the "Desargues's theorem" applet at http://www.dynamicgeometry.com/JavaSketchpad/Gallery.html 39654. The points I, J, and K there define the axis of perspectivity. See Theorems dalaw 39880 for Desargues's law, which eliminates all of the preconditions on the atoms except for central perspectivity. This is Metamath 100 proof #87. (Contributed by NM, 20-Aug-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) & ⊢ 𝐸 = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) & ⊢ 𝐹 = ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈)))) → 𝐹 ≤ (𝐷 ∨ 𝐸)) | ||
| Theorem | dath2 39731 | Version of Desargues's theorem dath 39730 with a different variable ordering. (Contributed by NM, 7-Oct-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) & ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) & ⊢ 𝐸 = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) & ⊢ 𝐹 = ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈)))) → 𝐷 ≤ (𝐸 ∨ 𝐹)) | ||
| Theorem | lineset 39732* | The set of lines in a Hilbert lattice. (Contributed by NM, 19-Sep-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (Lines‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → 𝑁 = {𝑠 ∣ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑠 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)})}) | ||
| Theorem | isline 39733* | The predicate "is a line". (Contributed by NM, 19-Sep-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (Lines‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}))) | ||
| Theorem | islinei 39734* | Condition implying "is a line". (Contributed by NM, 3-Feb-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (Lines‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑄 ∨ 𝑅)})) → 𝑋 ∈ 𝑁) | ||
| Theorem | pointsetN 39735* | The set of points in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (Points‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → 𝑃 = {𝑝 ∣ ∃𝑎 ∈ 𝐴 𝑝 = {𝑎}}) | ||
| Theorem | ispointN 39736* | The predicate "is a point". (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (Points‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝐴 𝑋 = {𝑎})) | ||
| Theorem | atpointN 39737 | The singleton of an atom is a point. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (Points‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐴) → {𝑋} ∈ 𝑃) | ||
| Theorem | psubspset 39738* | The set of projective subspaces in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → 𝑆 = {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑠))}) | ||
| Theorem | ispsubsp 39739* | The predicate "is a projective subspace". (Contributed by NM, 2-Oct-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋)))) | ||
| Theorem | ispsubsp2 39740* | The predicate "is a projective subspace". (Contributed by NM, 13-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)))) | ||
| Theorem | psubspi 39741* | Property of a projective subspace. (Contributed by NM, 13-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴) ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟)) → 𝑃 ∈ 𝑋) | ||
| Theorem | psubspi2N 39742 | Property of a projective subspace. (Contributed by NM, 13-Jan-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑃 ∈ 𝑋) | ||
| Theorem | 0psubN 39743 | The empty set is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.) |
| ⊢ 𝑆 = (PSubSp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → ∅ ∈ 𝑆) | ||
| Theorem | snatpsubN 39744 | The singleton of an atom is a projective subspace. (Contributed by NM, 9-Sep-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → {𝑃} ∈ 𝑆) | ||
| Theorem | pointpsubN 39745 | A point (singleton of an atom) is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.) |
| ⊢ 𝑃 = (Points‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝑃) → 𝑋 ∈ 𝑆) | ||
| Theorem | linepsubN 39746 | A line is a projective subspace. (Contributed by NM, 16-Oct-2011.) (New usage is discouraged.) |
| ⊢ 𝑁 = (Lines‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝑁) → 𝑋 ∈ 𝑆) | ||
| Theorem | atpsubN 39747 | The set of all atoms is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → 𝐴 ∈ 𝑆) | ||
| Theorem | psubssat 39748 | A projective subspace consists of atoms. (Contributed by NM, 4-Nov-2011.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ 𝐴) | ||
| Theorem | psubatN 39749 | A member of a projective subspace is an atom. (Contributed by NM, 4-Nov-2011.) (New usage is discouraged.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑋) → 𝑌 ∈ 𝐴) | ||
| Theorem | pmapfval 39750* | The projective map of a Hilbert lattice. (Contributed by NM, 2-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐶 → 𝑀 = (𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥})) | ||
| Theorem | pmapval 39751* | Value of the projective map of a Hilbert lattice. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋}) | ||
| Theorem | elpmap 39752 | Member of a projective map. (Contributed by NM, 27-Jan-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∈ (𝑀‘𝑋) ↔ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑋))) | ||
| Theorem | pmapssat 39753 | The projective map of a Hilbert lattice is a set of atoms. (Contributed by NM, 14-Jan-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ 𝐴) | ||
| Theorem | pmapssbaN 39754 | A weakening of pmapssat 39753 to shorten some proofs. (Contributed by NM, 7-Mar-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ 𝐵) | ||
| Theorem | pmaple 39755 | The projective map of a Hilbert lattice preserves ordering. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑀‘𝑋) ⊆ (𝑀‘𝑌))) | ||
| Theorem | pmap11 39756 | The projective map of a Hilbert lattice is one-to-one. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑀‘𝑋) = (𝑀‘𝑌) ↔ 𝑋 = 𝑌)) | ||
| Theorem | pmapat 39757 | The projective map of an atom. (Contributed by NM, 25-Jan-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑀‘𝑃) = {𝑃}) | ||
| Theorem | elpmapat 39758 | Member of the projective map of an atom. (Contributed by NM, 27-Jan-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑋 ∈ (𝑀‘𝑃) ↔ 𝑋 = 𝑃)) | ||
| Theorem | pmap0 39759 | Value of the projective map of a Hilbert lattice at lattice zero. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.) |
| ⊢ 0 = (0.‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ (𝐾 ∈ AtLat → (𝑀‘ 0 ) = ∅) | ||
| Theorem | pmapeq0 39760 | A projective map value is zero iff its argument is lattice zero. (Contributed by NM, 27-Jan-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) = ∅ ↔ 𝑋 = 0 )) | ||
| Theorem | pmap1N 39761 | Value of the projective map of a Hilbert lattice at lattice unity. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.) (New usage is discouraged.) |
| ⊢ 1 = (1.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ (𝐾 ∈ OP → (𝑀‘ 1 ) = 𝐴) | ||
| Theorem | pmapsub 39762 | The projective map of a Hilbert lattice maps to projective subspaces. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ∈ 𝑆) | ||
| Theorem | pmapglbx 39763* | The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb 39764, where we read 𝑆 as 𝑆(𝑖). Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆})) = ∩ 𝑖 ∈ 𝐼 (𝑀‘𝑆)) | ||
| Theorem | pmapglb 39764* | The projective map of the GLB of a set of lattice elements 𝑆. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) | ||
| Theorem | pmapglb2N 39765* | The projective map of the GLB of a set of lattice elements 𝑆. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. Allows 𝑆 = ∅. (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) → (𝑀‘(𝐺‘𝑆)) = (𝐴 ∩ ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥))) | ||
| Theorem | pmapglb2xN 39766* | The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb2N 39765, where we read 𝑆 as 𝑆(𝑖). Extension of Theorem 15.5.2 of [MaedaMaeda] p. 62 that allows 𝐼 = ∅. (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆})) = (𝐴 ∩ ∩ 𝑖 ∈ 𝐼 (𝑀‘𝑆))) | ||
| Theorem | pmapmeet 39767 | The projective map of a meet. (Contributed by NM, 25-Jan-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃‘(𝑋 ∧ 𝑌)) = ((𝑃‘𝑋) ∩ (𝑃‘𝑌))) | ||
| Theorem | isline2 39768* | Definition of line in terms of projective map. (Contributed by NM, 25-Jan-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (Lines‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))))) | ||
| Theorem | linepmap 39769 | A line described with a projective map. (Contributed by NM, 3-Feb-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (Lines‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑀‘(𝑃 ∨ 𝑄)) ∈ 𝑁) | ||
| Theorem | isline3 39770* | Definition of line in terms of original lattice elements. (Contributed by NM, 29-Apr-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (Lines‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) | ||
| Theorem | isline4N 39771* | Definition of line in terms of original lattice elements. (Contributed by NM, 16-Jun-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (Lines‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋)) | ||
| Theorem | lneq2at 39772 | A line equals the join of any two of its distinct points (atoms). (Contributed by NM, 29-Apr-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (Lines‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) → 𝑋 = (𝑃 ∨ 𝑄)) | ||
| Theorem | lnatexN 39773* | There is an atom in a line different from any other. (Contributed by NM, 30-Apr-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (Lines‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) | ||
| Theorem | lnjatN 39774* | Given an atom in a line, there is another atom which when joined equals the line. (Contributed by NM, 30-Apr-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (Lines‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑋 = (𝑃 ∨ 𝑞))) | ||
| Theorem | lncvrelatN 39775 | A lattice element covered by a line is an atom. (Contributed by NM, 28-Apr-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (Lines‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃𝐶𝑋)) → 𝑃 ∈ 𝐴) | ||
| Theorem | lncvrat 39776 | A line covers the atoms it contains. (Contributed by NM, 30-Apr-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (Lines‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ 𝑃 ≤ 𝑋)) → 𝑃𝐶𝑋) | ||
| Theorem | lncmp 39777 | If two lines are comparable, they are equal. (Contributed by NM, 30-Apr-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑁 = (Lines‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑀‘𝑋) ∈ 𝑁 ∧ (𝑀‘𝑌) ∈ 𝑁)) → (𝑋 ≤ 𝑌 ↔ 𝑋 = 𝑌)) | ||
| Theorem | 2lnat 39778 | Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (Lines‘𝐾) & ⊢ 𝐹 = (pmap‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐹‘𝑋) ∈ 𝑁 ∧ (𝐹‘𝑌) ∈ 𝑁) ∧ (𝑋 ≠ 𝑌 ∧ (𝑋 ∧ 𝑌) ≠ 0 )) → (𝑋 ∧ 𝑌) ∈ 𝐴) | ||
| Theorem | 2atm2atN 39779 | Two joins with a common atom have a nonzero meet. (Contributed by NM, 4-Jul-2012.) (New usage is discouraged.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) ≠ 0 ) | ||
| Theorem | 2llnma1b 39780 | Generalization of 2llnma1 39781. (Contributed by NM, 26-Apr-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)) = 𝑃) | ||
| Theorem | 2llnma1 39781 | Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 11-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((𝑄 ∨ 𝑃) ∧ (𝑄 ∨ 𝑅)) = 𝑄) | ||
| Theorem | 2llnma3r 39782 | Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 30-Apr-2013.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∨ 𝑅) ≠ (𝑄 ∨ 𝑅)) → ((𝑃 ∨ 𝑅) ∧ (𝑄 ∨ 𝑅)) = 𝑅) | ||
| Theorem | 2llnma2 39783 | Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 28-May-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ((𝑅 ∨ 𝑃) ∧ (𝑅 ∨ 𝑄)) = 𝑅) | ||
| Theorem | 2llnma2rN 39784 | Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 2-May-2013.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑅) ∧ (𝑄 ∨ 𝑅)) = 𝑅) | ||
| Theorem | cdlema1N 39785 | A condition for required for proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 29-Apr-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (Lines‘𝐾) & ⊢ 𝐹 = (pmap‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑋 ∨ 𝑅) = (𝑋 ∨ 𝑌)) | ||
| Theorem | cdlema2N 39786 | A condition for required for proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 9-May-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑅 ∧ 𝑋) = 0 ) | ||
| Theorem | cdlemblem 39787 | Lemma for cdlemb 39788. (Contributed by NM, 8-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑋) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) ∧ (𝑢 ∈ 𝐴 ∧ (𝑢 ≠ 𝑉 ∧ 𝑢 < 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ (𝑃 ∨ 𝑢)))) → (¬ 𝑟 ≤ 𝑋 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))) | ||
| Theorem | cdlemb 39788* | Given two atoms not less than or equal to an element covered by 1, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 8-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑋 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))) | ||
| Syntax | cpadd 39789 | Extend class notation with projective subspace sum. |
| class +𝑃 | ||
| Definition | df-padd 39790* | Define projective sum of two subspaces (or more generally two sets of atoms), which is the union of all lines generated by pairs of atoms from each subspace. Lemma 16.2 of [MaedaMaeda] p. 68. For convenience, our definition is generalized to apply to empty sets. (Contributed by NM, 29-Dec-2011.) |
| ⊢ +𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙), 𝑛 ∈ 𝒫 (Atoms‘𝑙) ↦ ((𝑚 ∪ 𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞 ∈ 𝑚 ∃𝑟 ∈ 𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)}))) | ||
| Theorem | paddfval 39791* | Projective subspace sum operation. (Contributed by NM, 29-Dec-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → + = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚 ∪ 𝑛) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑚 ∃𝑟 ∈ 𝑛 𝑝 ≤ (𝑞 ∨ 𝑟)}))) | ||
| Theorem | paddval 39792* | Projective subspace sum operation value. (Contributed by NM, 29-Dec-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) = ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝 ≤ (𝑞 ∨ 𝑟)})) | ||
| Theorem | elpadd 39793* | Member of a projective subspace sum. (Contributed by NM, 29-Dec-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌) ∨ (𝑆 ∈ 𝐴 ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟))))) | ||
| Theorem | elpaddn0 39794* | Member of projective subspace sum of nonempty sets. (Contributed by NM, 3-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟)))) | ||
| Theorem | paddvaln0N 39795* | Projective subspace sum operation value for nonempty sets. (Contributed by NM, 27-Jan-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑋 + 𝑌) = {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝 ≤ (𝑞 ∨ 𝑟)}) | ||
| Theorem | elpaddri 39796 | Condition implying membership in a projective subspace sum. (Contributed by NM, 8-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑆 ∈ (𝑋 + 𝑌)) | ||
| Theorem | elpaddatriN 39797 | Condition implying membership in a projective subspace sum with a point. (Contributed by NM, 1-Feb-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑅 ∨ 𝑄))) → 𝑆 ∈ (𝑋 + {𝑄})) | ||
| Theorem | elpaddat 39798* | Membership in a projective subspace sum with a point. (Contributed by NM, 29-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 𝑆 ≤ (𝑝 ∨ 𝑄)))) | ||
| Theorem | elpaddatiN 39799* | Consequence of membership in a projective subspace sum with a point. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑅 ∈ (𝑋 + {𝑄}))) → ∃𝑝 ∈ 𝑋 𝑅 ≤ (𝑝 ∨ 𝑄)) | ||
| Theorem | elpadd2at 39800 | Membership in a projective subspace sum of two points. (Contributed by NM, 29-Jan-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |