Home | Metamath
Proof Explorer Theorem List (p. 398 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29156) |
Hilbert Space Explorer
(29157-30679) |
Users' Mathboxes
(30680-46368) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mapdh8c 39701* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 6-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑤〉) = 𝐸) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) & ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑤, 𝐸, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) | ||
Theorem | mapdh8d0N 39702* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 10-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) & ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) | ||
Theorem | mapdh8d 39703* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 6-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) | ||
Theorem | mapdh8e 39704* | Part of Part (8) in [Baer] p. 48. Eliminate 𝑤. (Contributed by NM, 10-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) | ||
Theorem | mapdh8g 39705* | Part of Part (8) in [Baer] p. 48. Eliminate 𝑋 ∈ (𝑁‘{𝑌, 𝑇}). TODO: break out 𝑇 ≠ 0 in mapdh8e 39704 so we can share hypotheses. Also, look at hypothesis sharing for earlier mapdh8* and mapdh75* stuff. (Contributed by NM, 10-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) | ||
Theorem | mapdh8i 39706* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 11-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) | ||
Theorem | mapdh8j 39707* | Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) | ||
Theorem | mapdh8 39708* | Part (8) in [Baer] p. 48. Given a reference vector 𝑋, the value of function 𝐼 at a vector 𝑇 is independent of the choice of auxiliary vectors 𝑌 and 𝑍. Unlike Baer's, our version does not require 𝑋, 𝑌, and 𝑍 to be independent, and also is defined for all 𝑌 and 𝑍 that are not colinear with 𝑋 or 𝑇. We do this to make the definition of Baer's sigma function more straightforward. (This part eliminates 𝑇 ≠ 0.) (Contributed by NM, 13-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, (𝐼‘〈𝑋, 𝐹, 𝑌〉), 𝑇〉) = (𝐼‘〈𝑍, (𝐼‘〈𝑋, 𝐹, 𝑍〉), 𝑇〉)) | ||
Theorem | mapdh9a 39709* | Lemma for part (9) in [Baer] p. 48. TODO: why is this 50% larger than mapdh9aOLDN 39710? (Contributed by NM, 14-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) | ||
Theorem | mapdh9aOLDN 39710* | Lemma for part (9) in [Baer] p. 48. (Contributed by NM, 14-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) | ||
Syntax | chdma1 39711 | Extend class notation with preliminary map from vectors to functionals in the closed kernel dual space. |
class HDMap1 | ||
Syntax | chdma 39712 | Extend class notation with map from vectors to functionals in the closed kernel dual space. |
class HDMap | ||
Definition | df-hdmap1 39713* | Define preliminary map from vectors to functionals in the closed kernel dual space. See hdmap1fval 39716 description for more details. (Contributed by NM, 14-May-2015.) |
⊢ HDMap1 = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝑘)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st ‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd ‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))))})) | ||
Definition | df-hdmap 39714* | Define map from vectors to functionals in the closed kernel dual space. See hdmapfval 39747 description for more details. (Contributed by NM, 15-May-2015.) |
⊢ HDMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [〈( I ↾ (Base‘𝑘)), ( I ↾ ((LTrn‘𝑘)‘𝑤))〉 / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))})) | ||
Theorem | hdmap1ffval 39715* | Preliminary map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 14-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑋 → (HDMap1‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝐾)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st ‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd ‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))))})) | ||
Theorem | hdmap1fval 39716* | Preliminary map from vectors to functionals in the closed kernel dual space. TODO: change span 𝐽 to the convention 𝐿 for this section. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐼 = (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)})))))) | ||
Theorem | hdmap1vallem 39717* | Value of preliminary map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ ((𝑉 × 𝐷) × 𝑉)) ⇒ ⊢ (𝜑 → (𝐼‘𝑇) = if((2nd ‘𝑇) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑇)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑇)) − (2nd ‘𝑇))})) = (𝐽‘{((2nd ‘(1st ‘𝑇))𝑅ℎ)}))))) | ||
Theorem | hdmap1val 39718* | Value of preliminary map from vectors to functionals in the closed kernel dual space. (Restatement of mapdhval 39644.) TODO: change 𝐼 = (𝑥 ∈ V ↦... to (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌 > ) =... in e.g. mapdh8 39708 to shorten proofs with no $d on 𝑥. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = if(𝑌 = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅ℎ)}))))) | ||
Theorem | hdmap1val0 39719 | Value of preliminary map from vectors to functionals at zero. (Restated mapdhval0 39645.) (Contributed by NM, 17-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) | ||
Theorem | hdmap1val2 39720* | Value of preliminary map from vectors to functionals in the closed kernel dual space, for nonzero 𝑌. (Contributed by NM, 16-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) | ||
Theorem | hdmap1eq 39721 | The defining equation for h(x,x',y)=y' in part (2) in [Baer] p. 45 line 24. (Contributed by NM, 16-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐺 ∈ 𝐷) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) ⇒ ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})))) | ||
Theorem | hdmap1cbv 39722* | Frequently used lemma to change bound variables in 𝐿 hypothesis. (Contributed by NM, 15-May-2015.) |
⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) ⇒ ⊢ 𝐿 = (𝑦 ∈ V ↦ if((2nd ‘𝑦) = 0 , 𝑄, (℩𝑖 ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑦)})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑦)) − (2nd ‘𝑦))})) = (𝐽‘{((2nd ‘(1st ‘𝑦))𝑅𝑖)}))))) | ||
Theorem | hdmap1valc 39723* | Connect the value of the preliminary map from vectors to functionals 𝐼 to the hypothesis 𝐿 used by earlier theorems. Note: the 𝑋 ∈ (𝑉 ∖ { 0 }) hypothesis could be the more general 𝑋 ∈ 𝑉 but the former will be easier to use. TODO: use the 𝐼 function directly in those theorems, so this theorem becomes unnecessary? TODO: The hdmap1cbv 39722 is probably unnecessary, but it would mean different $d's later on. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐿‘〈𝑋, 𝐹, 𝑌〉)) | ||
Theorem | hdmap1cl 39724 | Convert closure theorem mapdhcl 39647 to use HDMap1 function. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) | ||
Theorem | hdmap1eq2 39725 | Convert mapdheq2 39649 to use HDMap1 function. (Contributed by NM, 16-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑋〉) = 𝐹) | ||
Theorem | hdmap1eq4N 39726 | Convert mapdheq4 39652 to use HDMap1 function. (Contributed by NM, 17-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐵) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑍〉) = 𝐵) | ||
Theorem | hdmap1l6lem1 39727 | Lemma for hdmap1l6 39741. Part (6) in [Baer] p. 47, lines 16-18. (Contributed by NM, 13-Apr-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) ⇒ ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅(𝐺 ✚ 𝐸))})) | ||
Theorem | hdmap1l6lem2 39728 | Lemma for hdmap1l6 39741. Part (6) in [Baer] p. 47, lines 20-22. (Contributed by NM, 13-Apr-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) ⇒ ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{(𝐺 ✚ 𝐸)})) | ||
Theorem | hdmap1l6a 39729 | Lemma for hdmap1l6 39741. Part (6) in [Baer] p. 47, case 1. (Contributed by NM, 23-Apr-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) & ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1l6b0N 39730 | Lemmma for hdmap1l6 39741. (Contributed by NM, 23-Apr-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌, 𝑍})) = { 0 }) ⇒ ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | ||
Theorem | hdmap1l6b 39731 | Lemmma for hdmap1l6 39741. (Contributed by NM, 24-Apr-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑌 = 0 ) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1l6c 39732 | Lemmma for hdmap1l6 39741. (Contributed by NM, 24-Apr-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 = 0 ) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1l6d 39733 | Lemmma for hdmap1l6 39741. (Contributed by NM, 1-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉))) | ||
Theorem | hdmap1l6e 39734 | Lemmma for hdmap1l6 39741. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1l6f 39735 | Lemmma for hdmap1l6 39741. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑌〉))) | ||
Theorem | hdmap1l6g 39736 | Lemmma for hdmap1l6 39741. Part (6) of [Baer] p. 47 line 39. (Contributed by NM, 1-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉)) = (((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑌〉)) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1l6h 39737 | Lemmma for hdmap1l6 39741. Part (6) of [Baer] p. 48 line 2. (Contributed by NM, 1-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1l6i 39738 | Lemmma for hdmap1l6 39741. Eliminate auxiliary vector 𝑤. (Contributed by NM, 1-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1l6j 39739 | Lemmma for hdmap1l6 39741. Eliminate (𝑁 { Y } ) = ( N {𝑍}) hypothesis. (Contributed by NM, 1-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1l6k 39740 | Lemmma for hdmap1l6 39741. Eliminate nonzero vector requirement. (Contributed by NM, 1-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1l6 39741 | Part (6) of [Baer] p. 47 line 6. Note that we use ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}) which is equivalent to Baer's "Fx ∩ (Fy + Fz)" by lspdisjb 20278. (Convert mapdh6N 39667 to use the function HDMap1.) (Contributed by NM, 17-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) ⇒ ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) | ||
Theorem | hdmap1eulem 39742* | Lemma for hdmap1eu 39744. TODO: combine with hdmap1eu 39744 or at least share some hypotheses. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) & ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) ⇒ ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) | ||
Theorem | hdmap1eulemOLDN 39743* | Lemma for hdmap1euOLDN 39745. TODO: combine with hdmap1euOLDN 39745 or at least share some hypotheses. (Contributed by NM, 15-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑅 = (-g‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐽 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) & ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) ⇒ ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) | ||
Theorem | hdmap1eu 39744* | Convert mapdh9a 39709 to use the HDMap1 notation. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) | ||
Theorem | hdmap1euOLDN 39745* | Convert mapdh9aOLDN 39710 to use the HDMap1 notation. (Contributed by NM, 15-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) | ||
Theorem | hdmapffval 39746* | Map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑋 → (HDMap‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑤))〉 / 𝑒][((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝐾)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝐾)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝐾)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))})) | ||
Theorem | hdmapfval 39747* | Map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝑆 = (𝑡 ∈ 𝑉 ↦ (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑡})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑡〉))))) | ||
Theorem | hdmapval 39748* | Value of map from vectors to functionals in the closed kernel dual space. This is the function sigma on line 27 above part 9 in [Baer] p. 48. We select a convenient fixed reference vector 𝐸 to be 〈0, 1〉 (corresponding to vector u on p. 48 line 7) whose span is the lattice isomorphism map of the fiducial atom 𝑃 = ((oc‘𝐾)‘𝑊) (see dvheveccl 39032). (𝐽‘𝐸) is a fixed reference functional determined by this vector (corresponding to u' on line 8; mapdhvmap 39689 shows in Baer's notation (Fu)* = Gu'). Baer's independent vectors v and w on line 7 correspond to our 𝑧 that the ∀𝑧 ∈ 𝑉 ranges over. The middle term (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉) provides isolation to allow 𝐸 and 𝑇 to assume the same value without conflict. Closure is shown by hdmapcl 39750. If a separate auxiliary vector is known, hdmapval2 39752 provides a version without quantification. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆‘𝑇) = (℩𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)))) | ||
Theorem | hdmapfnN 39749 | Functionality of map from vectors to functionals with closed kernels. (Contributed by NM, 30-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝑆 Fn 𝑉) | ||
Theorem | hdmapcl 39750 | Closure of map from vectors to functionals with closed kernels. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆‘𝑇) ∈ 𝐷) | ||
Theorem | hdmapval2lem 39751* | Lemma for hdmapval2 39752. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝐷) ⇒ ⊢ (𝜑 → ((𝑆‘𝑇) = 𝐹 ↔ ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → 𝐹 = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)))) | ||
Theorem | hdmapval2 39752 | Value of map from vectors to functionals with a specific auxiliary vector. TODO: Would shorter proofs result if the .ne hypothesis were changed to two ≠ hypothesis? Consider hdmaplem1 39691 through hdmaplem4 39694, which would become obsolete. (Contributed by NM, 15-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇}))) ⇒ ⊢ (𝜑 → (𝑆‘𝑇) = (𝐼‘〈𝑋, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑋〉), 𝑇〉)) | ||
Theorem | hdmapval0 39753 | Value of map from vectors to functionals at zero. Note: we use dvh3dim 39366 for convenience, even though 3 dimensions aren't necessary at this point. TODO: I think either this or hdmapeq0 39764 could be derived from the other to shorten proof. (Contributed by NM, 17-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → (𝑆‘ 0 ) = 𝑄) | ||
Theorem | hdmapeveclem 39754 | Lemma for hdmapevec 39755. TODO: combine with hdmapevec 39755 if it shortens overall. (Contributed by NM, 16-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝐸}))) ⇒ ⊢ (𝜑 → (𝑆‘𝐸) = (𝐽‘𝐸)) | ||
Theorem | hdmapevec 39755 | Value of map from vectors to functionals at the reference vector 𝐸. (Contributed by NM, 16-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → (𝑆‘𝐸) = (𝐽‘𝐸)) | ||
Theorem | hdmapevec2 39756 | The inner product of the reference vector 𝐸 with itself is nonzero. This shows the inner product condition in the proof of Theorem 3.6 of [Holland95] p. 14 line 32, [ e , e ] ≠ 0 is satisfied. TODO: remove redundant hypothesis hdmapevec.j. (Contributed by NM, 1-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝜑 → ((𝑆‘𝐸)‘𝐸) = 1 ) | ||
Theorem | hdmapval3lemN 39757 | Value of map from vectors to functionals at arguments not colinear with the reference vector 𝐸. (Contributed by NM, 17-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸})) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ {(0g‘𝑈)})) & ⊢ (𝜑 → 𝑥 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇})) ⇒ ⊢ (𝜑 → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) | ||
Theorem | hdmapval3N 39758 | Value of map from vectors to functionals at arguments not colinear with the reference vector 𝐸. (Contributed by NM, 17-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸})) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆‘𝑇) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑇〉)) | ||
Theorem | hdmap10lem 39759 | Lemma for hdmap10 39760. (Contributed by NM, 17-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)})) | ||
Theorem | hdmap10 39760 | Part 10 in [Baer] p. 48 line 33, (Ft)* = G(tS) in their notation (S = sigma). (Contributed by NM, 17-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)})) | ||
Theorem | hdmap11lem1 39761 | Lemma for hdmapadd 39763. (Contributed by NM, 26-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) & ⊢ (𝜑 → 𝑧 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) & ⊢ (𝜑 → (𝑁‘{𝑧}) ≠ (𝑁‘{𝐸})) ⇒ ⊢ (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) | ||
Theorem | hdmap11lem2 39762 | Lemma for hdmapadd 39763. (Contributed by NM, 26-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) ⇒ ⊢ (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) | ||
Theorem | hdmapadd 39763 | Part 11 in [Baer] p. 48 line 35, (a+b)S = aS+bS in their notation (S = sigma). (Contributed by NM, 22-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ✚ = (+g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) | ||
Theorem | hdmapeq0 39764 | Part of proof of part 12 in [Baer] p. 49 line 3. (Contributed by NM, 22-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑆‘𝑇) = 𝑄 ↔ 𝑇 = 0 )) | ||
Theorem | hdmapnzcl 39765 | Nonzero vector closure of map from vectors to functionals with closed kernels. (Contributed by NM, 27-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑆‘𝑇) ∈ (𝐷 ∖ {𝑄})) | ||
Theorem | hdmapneg 39766 | Part of proof of part 12 in [Baer] p. 49 line 4. The sigma map of a negative is the negative of the sigma map. (Contributed by NM, 24-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑀 = (invg‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐼 = (invg‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆‘(𝑀‘𝑇)) = (𝐼‘(𝑆‘𝑇))) | ||
Theorem | hdmapsub 39767 | Part of proof of part 12 in [Baer] p. 49 line 5, (a-b)S = aS-bS in their notation (S = sigma). (Contributed by NM, 26-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝑁 = (-g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆‘(𝑋 − 𝑌)) = ((𝑆‘𝑋)𝑁(𝑆‘𝑌))) | ||
Theorem | hdmap11 39768 | Part of proof of part 12 in [Baer] p. 49 line 4, aS=bS iff a=b in their notation (S = sigma). The sigma map is one-to-one. (Contributed by NM, 26-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑆‘𝑋) = (𝑆‘𝑌) ↔ 𝑋 = 𝑌)) | ||
Theorem | hdmaprnlem1N 39769 | Part of proof of part 12 in [Baer] p. 49 line 10, Gu' ≠ Gs. Our (𝑁‘{𝑣}) is Baer's T. (Contributed by NM, 26-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) ⇒ ⊢ (𝜑 → (𝐿‘{(𝑆‘𝑢)}) ≠ (𝐿‘{𝑠})) | ||
Theorem | hdmaprnlem3N 39770 | Part of proof of part 12 in [Baer] p. 49 line 15, T ≠ P. Our (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) is Baer's P, where P* = G(u'+s). (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) ⇒ ⊢ (𝜑 → (𝑁‘{𝑣}) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) | ||
Theorem | hdmaprnlem3uN 39771 | Part of proof of part 12 in [Baer] p. 49. (Contributed by NM, 29-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) ⇒ ⊢ (𝜑 → (𝑁‘{𝑢}) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) | ||
Theorem | hdmaprnlem4tN 39772 | Lemma for hdmaprnN 39784. TODO: This lemma doesn't quite pay for itself even though used six times. Maybe prove this directly instead. (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ⇒ ⊢ (𝜑 → 𝑡 ∈ 𝑉) | ||
Theorem | hdmaprnlem4N 39773 | Part of proof of part 12 in [Baer] p. 49 line 19. (T* =) (Ft)* = Gs. (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠})) | ||
Theorem | hdmaprnlem6N 39774 | Part of proof of part 12 in [Baer] p. 49 line 18, G(u'+s) = G(u'+t). (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) & ⊢ + = (+g‘𝑈) & ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) ⇒ ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝐿‘{((𝑆‘𝑢) ✚ (𝑆‘𝑡))})) | ||
Theorem | hdmaprnlem7N 39775 | Part of proof of part 12 in [Baer] p. 49 line 19, s-St ∈ G(u'+s) = P*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) & ⊢ + = (+g‘𝑈) & ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) ⇒ ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) | ||
Theorem | hdmaprnlem8N 39776 | Part of proof of part 12 in [Baer] p. 49 line 19, s-St ∈ (Ft)* = T*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) & ⊢ + = (+g‘𝑈) & ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) ⇒ ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ (𝑀‘(𝑁‘{𝑡}))) | ||
Theorem | hdmaprnlem9N 39777 | Part of proof of part 12 in [Baer] p. 49 line 21, s=S(t). TODO: we seem to be going back and forth with mapd11 39559 and mapdcnv11N 39579. Use better hypotheses and/or theorems? (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) & ⊢ + = (+g‘𝑈) & ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) ⇒ ⊢ (𝜑 → 𝑠 = (𝑆‘𝑡)) | ||
Theorem | hdmaprnlem3eN 39778* | Lemma for hdmaprnN 39784. (Contributed by NM, 29-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (𝜑 → ∃𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) | ||
Theorem | hdmaprnlem10N 39779* | Lemma for hdmaprnN 39784. Show 𝑠 is in the range of 𝑆. (Contributed by NM, 29-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (𝜑 → ∃𝑡 ∈ 𝑉 (𝑆‘𝑡) = 𝑠) | ||
Theorem | hdmaprnlem11N 39780* | Lemma for hdmaprnN 39784. Show 𝑠 is in the range of 𝑆. (Contributed by NM, 29-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (𝜑 → 𝑠 ∈ ran 𝑆) | ||
Theorem | hdmaprnlem15N 39781* | Lemma for hdmaprnN 39784. Eliminate 𝑢. (Contributed by NM, 30-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 0 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ { 0 })) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) ⇒ ⊢ (𝜑 → 𝑠 ∈ ran 𝑆) | ||
Theorem | hdmaprnlem16N 39782 | Lemma for hdmaprnN 39784. Eliminate 𝑣. (Contributed by NM, 30-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 0 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ { 0 })) ⇒ ⊢ (𝜑 → 𝑠 ∈ ran 𝑆) | ||
Theorem | hdmaprnlem17N 39783 | Lemma for hdmaprnN 39784. Include zero. (Contributed by NM, 30-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 0 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ 𝐷) ⇒ ⊢ (𝜑 → 𝑠 ∈ ran 𝑆) | ||
Theorem | hdmaprnN 39784 | Part of proof of part 12 in [Baer] p. 49 line 21, As=B. (Contributed by NM, 30-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ran 𝑆 = 𝐷) | ||
Theorem | hdmapf1oN 39785 | Part 12 in [Baer] p. 49. The map from vectors to functionals with closed kernels maps one-to-one onto. Combined with hdmapadd 39763, this shows the map is an automorphism from the additive group of vectors to the additive group of functionals with closed kernels. (Contributed by NM, 30-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝑆:𝑉–1-1-onto→𝐷) | ||
Theorem | hdmap14lem1a 39786 | Prior to part 14 in [Baer] p. 49, line 25. (Contributed by NM, 31-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝐹 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐿‘{(𝑆‘𝑋)}) = (𝐿‘{(𝑆‘(𝐹 · 𝑋))})) | ||
Theorem | hdmap14lem2a 39787* | Prior to part 14 in [Baer] p. 49, line 25. TODO: fix to include 𝐹 = 0 so it can be used in hdmap14lem10 39797. (Contributed by NM, 31-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋))) | ||
Theorem | hdmap14lem1 39788 | Prior to part 14 in [Baer] p. 49, line 25. (Contributed by NM, 31-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑍 = (0g‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑄 = (0g‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ∖ {𝑍})) ⇒ ⊢ (𝜑 → (𝐿‘{(𝑆‘𝑋)}) = (𝐿‘{(𝑆‘(𝐹 · 𝑋))})) | ||
Theorem | hdmap14lem2N 39789* | Prior to part 14 in [Baer] p. 49, line 25. TODO: fix to include 𝐹 = 𝑍 so it can be used in hdmap14lem10 39797. (Contributed by NM, 31-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑍 = (0g‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑄 = (0g‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ∖ {𝑍})) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ (𝐴 ∖ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋))) | ||
Theorem | hdmap14lem3 39790* | Prior to part 14 in [Baer] p. 49, line 26. (Contributed by NM, 31-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑍 = (0g‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑄 = (0g‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ∖ {𝑍})) ⇒ ⊢ (𝜑 → ∃!𝑔 ∈ (𝐴 ∖ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋))) | ||
Theorem | hdmap14lem4a 39791* | Simplify (𝐴 ∖ {𝑄}) in hdmap14lem3 39790 to provide a slightly simpler definition later. (Contributed by NM, 31-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑍 = (0g‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑄 = (0g‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ∖ {𝑍})) ⇒ ⊢ (𝜑 → (∃!𝑔 ∈ (𝐴 ∖ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)) ↔ ∃!𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)))) | ||
Theorem | hdmap14lem4 39792* | Simplify (𝐴 ∖ {𝑄}) in hdmap14lem3 39790 to provide a slightly simpler definition later. TODO: Use hdmap14lem4a 39791 if that one is also used directly elsewhere. Otherwise, merge hdmap14lem4a 39791 into this one. (Contributed by NM, 31-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑍 = (0g‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑄 = (0g‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ∖ {𝑍})) ⇒ ⊢ (𝜑 → ∃!𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋))) | ||
Theorem | hdmap14lem6 39793* | Case where 𝐹 is zero. (Contributed by NM, 1-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑍 = (0g‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑄 = (0g‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 = 𝑍) ⇒ ⊢ (𝜑 → ∃!𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋))) | ||
Theorem | hdmap14lem7 39794* | Combine cases of 𝐹. TODO: Can this be done at once in hdmap14lem3 39790, in order to get rid of hdmap14lem6 39793? Perhaps modify lspsneu 20275 to become ∃!𝑘 ∈ 𝐾 instead of ∃!𝑘 ∈ (𝐾 ∖ { 0 })? (Contributed by NM, 1-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃!𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋))) | ||
Theorem | hdmap14lem8 39795 | Part of proof of part 14 in [Baer] p. 49 lines 33-35. (Contributed by NM, 1-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ✚ = (+g‘𝐶) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) & ⊢ (𝜑 → 𝐼 ∈ 𝐴) & ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) & ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → 𝐽 ∈ 𝐴) & ⊢ (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝐽 ∙ (𝑆‘(𝑋 + 𝑌)))) ⇒ ⊢ (𝜑 → ((𝐽 ∙ (𝑆‘𝑋)) ✚ (𝐽 ∙ (𝑆‘𝑌))) = ((𝐺 ∙ (𝑆‘𝑋)) ✚ (𝐼 ∙ (𝑆‘𝑌)))) | ||
Theorem | hdmap14lem9 39796 | Part of proof of part 14 in [Baer] p. 49 line 38. (Contributed by NM, 1-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ✚ = (+g‘𝐶) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) & ⊢ (𝜑 → 𝐼 ∈ 𝐴) & ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) & ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → 𝐽 ∈ 𝐴) & ⊢ (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝐽 ∙ (𝑆‘(𝑋 + 𝑌)))) ⇒ ⊢ (𝜑 → 𝐺 = 𝐼) | ||
Theorem | hdmap14lem10 39797 | Part of proof of part 14 in [Baer] p. 49 line 38. (Contributed by NM, 3-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ✚ = (+g‘𝐶) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) & ⊢ (𝜑 → 𝐼 ∈ 𝐴) & ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) & ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → 𝐺 = 𝐼) | ||
Theorem | hdmap14lem11 39798 | Part of proof of part 14 in [Baer] p. 50 line 3. (Contributed by NM, 3-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ✚ = (+g‘𝐶) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) & ⊢ (𝜑 → 𝐼 ∈ 𝐴) & ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) & ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) ⇒ ⊢ (𝜑 → 𝐺 = 𝐼) | ||
Theorem | hdmap14lem12 39799* | Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) ⇒ ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) | ||
Theorem | hdmap14lem13 39800* | Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) ⇒ ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ 𝑉 (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |