MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn Structured version   Visualization version   GIF version

Theorem acsfn 16585
Description: Algebraicity of a conditional point closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
acsfn (((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ (𝑇𝑎𝐾𝑎)} ∈ (ACS‘𝑋))
Distinct variable groups:   𝐾,𝑎   𝑇,𝑎   𝑉,𝑎   𝑋,𝑎

Proof of Theorem acsfn
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 6106 . . . . . . 7 Fun (𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅))
2 funiunfv 6698 . . . . . . 7 (Fun (𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) → 𝑐 ∈ (𝒫 𝑎 ∩ Fin)((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅))‘𝑐) = ((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) “ (𝒫 𝑎 ∩ Fin)))
31, 2mp1i 13 . . . . . 6 ((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑐 ∈ (𝒫 𝑎 ∩ Fin)((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅))‘𝑐) = ((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) “ (𝒫 𝑎 ∩ Fin)))
4 inss1 3992 . . . . . . . . . . . . 13 (𝒫 𝑎 ∩ Fin) ⊆ 𝒫 𝑎
54sseli 3757 . . . . . . . . . . . 12 (𝑐 ∈ (𝒫 𝑎 ∩ Fin) → 𝑐 ∈ 𝒫 𝑎)
65elpwid 4327 . . . . . . . . . . 11 (𝑐 ∈ (𝒫 𝑎 ∩ Fin) → 𝑐𝑎)
7 elpwi 4325 . . . . . . . . . . 11 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
86, 7sylan9ssr 3775 . . . . . . . . . 10 ((𝑎 ∈ 𝒫 𝑋𝑐 ∈ (𝒫 𝑎 ∩ Fin)) → 𝑐𝑋)
9 selpw 4322 . . . . . . . . . 10 (𝑐 ∈ 𝒫 𝑋𝑐𝑋)
108, 9sylibr 225 . . . . . . . . 9 ((𝑎 ∈ 𝒫 𝑋𝑐 ∈ (𝒫 𝑎 ∩ Fin)) → 𝑐 ∈ 𝒫 𝑋)
1110adantll 705 . . . . . . . 8 (((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑐 ∈ (𝒫 𝑎 ∩ Fin)) → 𝑐 ∈ 𝒫 𝑋)
12 eqeq1 2769 . . . . . . . . . 10 (𝑏 = 𝑐 → (𝑏 = 𝑇𝑐 = 𝑇))
1312ifbid 4265 . . . . . . . . 9 (𝑏 = 𝑐 → if(𝑏 = 𝑇, {𝐾}, ∅) = if(𝑐 = 𝑇, {𝐾}, ∅))
14 eqid 2765 . . . . . . . . 9 (𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) = (𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅))
15 snex 5064 . . . . . . . . . 10 {𝐾} ∈ V
16 0ex 4950 . . . . . . . . . 10 ∅ ∈ V
1715, 16ifex 4291 . . . . . . . . 9 if(𝑐 = 𝑇, {𝐾}, ∅) ∈ V
1813, 14, 17fvmpt 6471 . . . . . . . 8 (𝑐 ∈ 𝒫 𝑋 → ((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅))‘𝑐) = if(𝑐 = 𝑇, {𝐾}, ∅))
1911, 18syl 17 . . . . . . 7 (((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑐 ∈ (𝒫 𝑎 ∩ Fin)) → ((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅))‘𝑐) = if(𝑐 = 𝑇, {𝐾}, ∅))
2019iuneq2dv 4698 . . . . . 6 ((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑐 ∈ (𝒫 𝑎 ∩ Fin)((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅))‘𝑐) = 𝑐 ∈ (𝒫 𝑎 ∩ Fin)if(𝑐 = 𝑇, {𝐾}, ∅))
213, 20eqtr3d 2801 . . . . 5 ((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) “ (𝒫 𝑎 ∩ Fin)) = 𝑐 ∈ (𝒫 𝑎 ∩ Fin)if(𝑐 = 𝑇, {𝐾}, ∅))
2221sseq1d 3792 . . . 4 ((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → ( ((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎 𝑐 ∈ (𝒫 𝑎 ∩ Fin)if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎))
23 iunss 4717 . . . . 5 ( 𝑐 ∈ (𝒫 𝑎 ∩ Fin)if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎 ↔ ∀𝑐 ∈ (𝒫 𝑎 ∩ Fin)if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎)
24 sseq1 3786 . . . . . . . . 9 ({𝐾} = if(𝑐 = 𝑇, {𝐾}, ∅) → ({𝐾} ⊆ 𝑎 ↔ if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎))
2524bibi1d 334 . . . . . . . 8 ({𝐾} = if(𝑐 = 𝑇, {𝐾}, ∅) → (({𝐾} ⊆ 𝑎 ↔ (𝑐 = 𝑇𝐾𝑎)) ↔ (if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎 ↔ (𝑐 = 𝑇𝐾𝑎))))
26 sseq1 3786 . . . . . . . . 9 (∅ = if(𝑐 = 𝑇, {𝐾}, ∅) → (∅ ⊆ 𝑎 ↔ if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎))
2726bibi1d 334 . . . . . . . 8 (∅ = if(𝑐 = 𝑇, {𝐾}, ∅) → ((∅ ⊆ 𝑎 ↔ (𝑐 = 𝑇𝐾𝑎)) ↔ (if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎 ↔ (𝑐 = 𝑇𝐾𝑎))))
28 snssg 4469 . . . . . . . . . 10 (𝐾𝑋 → (𝐾𝑎 ↔ {𝐾} ⊆ 𝑎))
2928adantr 472 . . . . . . . . 9 ((𝐾𝑋𝑐 = 𝑇) → (𝐾𝑎 ↔ {𝐾} ⊆ 𝑎))
30 biimt 351 . . . . . . . . . 10 (𝑐 = 𝑇 → (𝐾𝑎 ↔ (𝑐 = 𝑇𝐾𝑎)))
3130adantl 473 . . . . . . . . 9 ((𝐾𝑋𝑐 = 𝑇) → (𝐾𝑎 ↔ (𝑐 = 𝑇𝐾𝑎)))
3229, 31bitr3d 272 . . . . . . . 8 ((𝐾𝑋𝑐 = 𝑇) → ({𝐾} ⊆ 𝑎 ↔ (𝑐 = 𝑇𝐾𝑎)))
33 0ss 4134 . . . . . . . . . . 11 ∅ ⊆ 𝑎
3433a1i 11 . . . . . . . . . 10 𝑐 = 𝑇 → ∅ ⊆ 𝑎)
35 pm2.21 121 . . . . . . . . . 10 𝑐 = 𝑇 → (𝑐 = 𝑇𝐾𝑎))
3634, 352thd 256 . . . . . . . . 9 𝑐 = 𝑇 → (∅ ⊆ 𝑎 ↔ (𝑐 = 𝑇𝐾𝑎)))
3736adantl 473 . . . . . . . 8 ((𝐾𝑋 ∧ ¬ 𝑐 = 𝑇) → (∅ ⊆ 𝑎 ↔ (𝑐 = 𝑇𝐾𝑎)))
3825, 27, 32, 37ifbothda 4280 . . . . . . 7 (𝐾𝑋 → (if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎 ↔ (𝑐 = 𝑇𝐾𝑎)))
3938ralbidv 3133 . . . . . 6 (𝐾𝑋 → (∀𝑐 ∈ (𝒫 𝑎 ∩ Fin)if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎 ↔ ∀𝑐 ∈ (𝒫 𝑎 ∩ Fin)(𝑐 = 𝑇𝐾𝑎)))
4039ad3antlr 722 . . . . 5 ((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑐 ∈ (𝒫 𝑎 ∩ Fin)if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎 ↔ ∀𝑐 ∈ (𝒫 𝑎 ∩ Fin)(𝑐 = 𝑇𝐾𝑎)))
4123, 40syl5bb 274 . . . 4 ((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → ( 𝑐 ∈ (𝒫 𝑎 ∩ Fin)if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎 ↔ ∀𝑐 ∈ (𝒫 𝑎 ∩ Fin)(𝑐 = 𝑇𝐾𝑎)))
42 sspwb 5073 . . . . . . . . 9 (𝑎𝑋 ↔ 𝒫 𝑎 ⊆ 𝒫 𝑋)
437, 42sylib 209 . . . . . . . 8 (𝑎 ∈ 𝒫 𝑋 → 𝒫 𝑎 ⊆ 𝒫 𝑋)
444, 43syl5ss 3772 . . . . . . 7 (𝑎 ∈ 𝒫 𝑋 → (𝒫 𝑎 ∩ Fin) ⊆ 𝒫 𝑋)
4544adantl 473 . . . . . 6 ((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (𝒫 𝑎 ∩ Fin) ⊆ 𝒫 𝑋)
46 ralss 3828 . . . . . 6 ((𝒫 𝑎 ∩ Fin) ⊆ 𝒫 𝑋 → (∀𝑐 ∈ (𝒫 𝑎 ∩ Fin)(𝑐 = 𝑇𝐾𝑎) ↔ ∀𝑐 ∈ 𝒫 𝑋(𝑐 ∈ (𝒫 𝑎 ∩ Fin) → (𝑐 = 𝑇𝐾𝑎))))
4745, 46syl 17 . . . . 5 ((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑐 ∈ (𝒫 𝑎 ∩ Fin)(𝑐 = 𝑇𝐾𝑎) ↔ ∀𝑐 ∈ 𝒫 𝑋(𝑐 ∈ (𝒫 𝑎 ∩ Fin) → (𝑐 = 𝑇𝐾𝑎))))
48 bi2.04 377 . . . . . . 7 ((𝑐 ∈ (𝒫 𝑎 ∩ Fin) → (𝑐 = 𝑇𝐾𝑎)) ↔ (𝑐 = 𝑇 → (𝑐 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾𝑎)))
4948ralbii 3127 . . . . . 6 (∀𝑐 ∈ 𝒫 𝑋(𝑐 ∈ (𝒫 𝑎 ∩ Fin) → (𝑐 = 𝑇𝐾𝑎)) ↔ ∀𝑐 ∈ 𝒫 𝑋(𝑐 = 𝑇 → (𝑐 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾𝑎)))
50 elpwg 4323 . . . . . . . . 9 (𝑇 ∈ Fin → (𝑇 ∈ 𝒫 𝑋𝑇𝑋))
5150biimparc 471 . . . . . . . 8 ((𝑇𝑋𝑇 ∈ Fin) → 𝑇 ∈ 𝒫 𝑋)
5251ad2antlr 718 . . . . . . 7 ((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑇 ∈ 𝒫 𝑋)
53 eleq1 2832 . . . . . . . . 9 (𝑐 = 𝑇 → (𝑐 ∈ (𝒫 𝑎 ∩ Fin) ↔ 𝑇 ∈ (𝒫 𝑎 ∩ Fin)))
5453imbi1d 332 . . . . . . . 8 (𝑐 = 𝑇 → ((𝑐 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾𝑎) ↔ (𝑇 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾𝑎)))
5554ceqsralv 3387 . . . . . . 7 (𝑇 ∈ 𝒫 𝑋 → (∀𝑐 ∈ 𝒫 𝑋(𝑐 = 𝑇 → (𝑐 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾𝑎)) ↔ (𝑇 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾𝑎)))
5652, 55syl 17 . . . . . 6 ((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑐 ∈ 𝒫 𝑋(𝑐 = 𝑇 → (𝑐 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾𝑎)) ↔ (𝑇 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾𝑎)))
5749, 56syl5bb 274 . . . . 5 ((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑐 ∈ 𝒫 𝑋(𝑐 ∈ (𝒫 𝑎 ∩ Fin) → (𝑐 = 𝑇𝐾𝑎)) ↔ (𝑇 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾𝑎)))
58 vex 3353 . . . . . . . 8 𝑎 ∈ V
5958elpw2 4986 . . . . . . 7 (𝑇 ∈ 𝒫 𝑎𝑇𝑎)
60 simplrr 796 . . . . . . . . 9 ((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑇 ∈ Fin)
6160biantrud 527 . . . . . . . 8 ((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑇 ∈ 𝒫 𝑎 ↔ (𝑇 ∈ 𝒫 𝑎𝑇 ∈ Fin)))
62 elin 3958 . . . . . . . 8 (𝑇 ∈ (𝒫 𝑎 ∩ Fin) ↔ (𝑇 ∈ 𝒫 𝑎𝑇 ∈ Fin))
6361, 62syl6bbr 280 . . . . . . 7 ((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑇 ∈ 𝒫 𝑎𝑇 ∈ (𝒫 𝑎 ∩ Fin)))
6459, 63syl5rbbr 277 . . . . . 6 ((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑇 ∈ (𝒫 𝑎 ∩ Fin) ↔ 𝑇𝑎))
6564imbi1d 332 . . . . 5 ((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑇 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾𝑎) ↔ (𝑇𝑎𝐾𝑎)))
6647, 57, 653bitrd 296 . . . 4 ((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑐 ∈ (𝒫 𝑎 ∩ Fin)(𝑐 = 𝑇𝐾𝑎) ↔ (𝑇𝑎𝐾𝑎)))
6722, 41, 663bitrrd 297 . . 3 ((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑇𝑎𝐾𝑎) ↔ ((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎))
6867rabbidva 3337 . 2 (((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ (𝑇𝑎𝐾𝑎)} = {𝑎 ∈ 𝒫 𝑋 ((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎})
69 simpll 783 . . 3 (((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) → 𝑋𝑉)
70 snelpwi 5068 . . . . . . 7 (𝐾𝑋 → {𝐾} ∈ 𝒫 𝑋)
7170ad2antlr 718 . . . . . 6 (((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) → {𝐾} ∈ 𝒫 𝑋)
72 0elpw 4992 . . . . . 6 ∅ ∈ 𝒫 𝑋
73 ifcl 4287 . . . . . 6 (({𝐾} ∈ 𝒫 𝑋 ∧ ∅ ∈ 𝒫 𝑋) → if(𝑏 = 𝑇, {𝐾}, ∅) ∈ 𝒫 𝑋)
7471, 72, 73sylancl 580 . . . . 5 (((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) → if(𝑏 = 𝑇, {𝐾}, ∅) ∈ 𝒫 𝑋)
7574adantr 472 . . . 4 ((((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) ∧ 𝑏 ∈ 𝒫 𝑋) → if(𝑏 = 𝑇, {𝐾}, ∅) ∈ 𝒫 𝑋)
7675fmpttd 6575 . . 3 (((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) → (𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)):𝒫 𝑋⟶𝒫 𝑋)
77 isacs1i 16583 . . 3 ((𝑋𝑉 ∧ (𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)):𝒫 𝑋⟶𝒫 𝑋) → {𝑎 ∈ 𝒫 𝑋 ((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎} ∈ (ACS‘𝑋))
7869, 76, 77syl2anc 579 . 2 (((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎} ∈ (ACS‘𝑋))
7968, 78eqeltrd 2844 1 (((𝑋𝑉𝐾𝑋) ∧ (𝑇𝑋𝑇 ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ (𝑇𝑎𝐾𝑎)} ∈ (ACS‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  {crab 3059  cin 3731  wss 3732  c0 4079  ifcif 4243  𝒫 cpw 4315  {csn 4334   cuni 4594   ciun 4676  cmpt 4888  cima 5280  Fun wfun 6062  wf 6064  cfv 6068  Fincfn 8160  ACScacs 16511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-fv 6076  df-mre 16512  df-acs 16515
This theorem is referenced by:  acsfn0  16586  acsfn1  16587  acsfn2  16589  acsfn1p  38446
  Copyright terms: Public domain W3C validator