Step | Hyp | Ref
| Expression |
1 | | funmpt 6377 |
. . . . . . 7
⊢ Fun
(𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) |
2 | | funiunfv 7018 |
. . . . . . 7
⊢ (Fun
(𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) → ∪ 𝑐 ∈ (𝒫 𝑎 ∩ Fin)((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅))‘𝑐) = ∪ ((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) “ (𝒫 𝑎 ∩ Fin))) |
3 | 1, 2 | mp1i 13 |
. . . . . 6
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → ∪
𝑐 ∈ (𝒫 𝑎 ∩ Fin)((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅))‘𝑐) = ∪ ((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) “ (𝒫 𝑎 ∩ Fin))) |
4 | | elinel1 4085 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ (𝒫 𝑎 ∩ Fin) → 𝑐 ∈ 𝒫 𝑎) |
5 | 4 | elpwid 4499 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ (𝒫 𝑎 ∩ Fin) → 𝑐 ⊆ 𝑎) |
6 | | elpwi 4497 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋) |
7 | 5, 6 | sylan9ssr 3891 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ 𝒫 𝑋 ∧ 𝑐 ∈ (𝒫 𝑎 ∩ Fin)) → 𝑐 ⊆ 𝑋) |
8 | | velpw 4493 |
. . . . . . . . . 10
⊢ (𝑐 ∈ 𝒫 𝑋 ↔ 𝑐 ⊆ 𝑋) |
9 | 7, 8 | sylibr 237 |
. . . . . . . . 9
⊢ ((𝑎 ∈ 𝒫 𝑋 ∧ 𝑐 ∈ (𝒫 𝑎 ∩ Fin)) → 𝑐 ∈ 𝒫 𝑋) |
10 | 9 | adantll 714 |
. . . . . . . 8
⊢
(((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑐 ∈ (𝒫 𝑎 ∩ Fin)) → 𝑐 ∈ 𝒫 𝑋) |
11 | | eqeq1 2742 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑐 → (𝑏 = 𝑇 ↔ 𝑐 = 𝑇)) |
12 | 11 | ifbid 4437 |
. . . . . . . . 9
⊢ (𝑏 = 𝑐 → if(𝑏 = 𝑇, {𝐾}, ∅) = if(𝑐 = 𝑇, {𝐾}, ∅)) |
13 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) = (𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) |
14 | | snex 5298 |
. . . . . . . . . 10
⊢ {𝐾} ∈ V |
15 | | 0ex 5175 |
. . . . . . . . . 10
⊢ ∅
∈ V |
16 | 14, 15 | ifex 4464 |
. . . . . . . . 9
⊢ if(𝑐 = 𝑇, {𝐾}, ∅) ∈ V |
17 | 12, 13, 16 | fvmpt 6775 |
. . . . . . . 8
⊢ (𝑐 ∈ 𝒫 𝑋 → ((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅))‘𝑐) = if(𝑐 = 𝑇, {𝐾}, ∅)) |
18 | 10, 17 | syl 17 |
. . . . . . 7
⊢
(((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑐 ∈ (𝒫 𝑎 ∩ Fin)) → ((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅))‘𝑐) = if(𝑐 = 𝑇, {𝐾}, ∅)) |
19 | 18 | iuneq2dv 4905 |
. . . . . 6
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → ∪
𝑐 ∈ (𝒫 𝑎 ∩ Fin)((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅))‘𝑐) = ∪ 𝑐 ∈ (𝒫 𝑎 ∩ Fin)if(𝑐 = 𝑇, {𝐾}, ∅)) |
20 | 3, 19 | eqtr3d 2775 |
. . . . 5
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → ∪
((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) “ (𝒫 𝑎 ∩ Fin)) = ∪ 𝑐 ∈ (𝒫 𝑎 ∩ Fin)if(𝑐 = 𝑇, {𝐾}, ∅)) |
21 | 20 | sseq1d 3908 |
. . . 4
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (∪
((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎 ↔ ∪ 𝑐 ∈ (𝒫 𝑎 ∩ Fin)if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎)) |
22 | | iunss 4931 |
. . . . 5
⊢ (∪ 𝑐 ∈ (𝒫 𝑎 ∩ Fin)if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎 ↔ ∀𝑐 ∈ (𝒫 𝑎 ∩ Fin)if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎) |
23 | | sseq1 3902 |
. . . . . . . . 9
⊢ ({𝐾} = if(𝑐 = 𝑇, {𝐾}, ∅) → ({𝐾} ⊆ 𝑎 ↔ if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎)) |
24 | 23 | bibi1d 347 |
. . . . . . . 8
⊢ ({𝐾} = if(𝑐 = 𝑇, {𝐾}, ∅) → (({𝐾} ⊆ 𝑎 ↔ (𝑐 = 𝑇 → 𝐾 ∈ 𝑎)) ↔ (if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎 ↔ (𝑐 = 𝑇 → 𝐾 ∈ 𝑎)))) |
25 | | sseq1 3902 |
. . . . . . . . 9
⊢ (∅
= if(𝑐 = 𝑇, {𝐾}, ∅) → (∅ ⊆ 𝑎 ↔ if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎)) |
26 | 25 | bibi1d 347 |
. . . . . . . 8
⊢ (∅
= if(𝑐 = 𝑇, {𝐾}, ∅) → ((∅ ⊆ 𝑎 ↔ (𝑐 = 𝑇 → 𝐾 ∈ 𝑎)) ↔ (if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎 ↔ (𝑐 = 𝑇 → 𝐾 ∈ 𝑎)))) |
27 | | snssg 4673 |
. . . . . . . . . 10
⊢ (𝐾 ∈ 𝑋 → (𝐾 ∈ 𝑎 ↔ {𝐾} ⊆ 𝑎)) |
28 | 27 | adantr 484 |
. . . . . . . . 9
⊢ ((𝐾 ∈ 𝑋 ∧ 𝑐 = 𝑇) → (𝐾 ∈ 𝑎 ↔ {𝐾} ⊆ 𝑎)) |
29 | | biimt 364 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑇 → (𝐾 ∈ 𝑎 ↔ (𝑐 = 𝑇 → 𝐾 ∈ 𝑎))) |
30 | 29 | adantl 485 |
. . . . . . . . 9
⊢ ((𝐾 ∈ 𝑋 ∧ 𝑐 = 𝑇) → (𝐾 ∈ 𝑎 ↔ (𝑐 = 𝑇 → 𝐾 ∈ 𝑎))) |
31 | 28, 30 | bitr3d 284 |
. . . . . . . 8
⊢ ((𝐾 ∈ 𝑋 ∧ 𝑐 = 𝑇) → ({𝐾} ⊆ 𝑎 ↔ (𝑐 = 𝑇 → 𝐾 ∈ 𝑎))) |
32 | | 0ss 4285 |
. . . . . . . . . . 11
⊢ ∅
⊆ 𝑎 |
33 | 32 | a1i 11 |
. . . . . . . . . 10
⊢ (¬
𝑐 = 𝑇 → ∅ ⊆ 𝑎) |
34 | | pm2.21 123 |
. . . . . . . . . 10
⊢ (¬
𝑐 = 𝑇 → (𝑐 = 𝑇 → 𝐾 ∈ 𝑎)) |
35 | 33, 34 | 2thd 268 |
. . . . . . . . 9
⊢ (¬
𝑐 = 𝑇 → (∅ ⊆ 𝑎 ↔ (𝑐 = 𝑇 → 𝐾 ∈ 𝑎))) |
36 | 35 | adantl 485 |
. . . . . . . 8
⊢ ((𝐾 ∈ 𝑋 ∧ ¬ 𝑐 = 𝑇) → (∅ ⊆ 𝑎 ↔ (𝑐 = 𝑇 → 𝐾 ∈ 𝑎))) |
37 | 24, 26, 31, 36 | ifbothda 4452 |
. . . . . . 7
⊢ (𝐾 ∈ 𝑋 → (if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎 ↔ (𝑐 = 𝑇 → 𝐾 ∈ 𝑎))) |
38 | 37 | ralbidv 3109 |
. . . . . 6
⊢ (𝐾 ∈ 𝑋 → (∀𝑐 ∈ (𝒫 𝑎 ∩ Fin)if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎 ↔ ∀𝑐 ∈ (𝒫 𝑎 ∩ Fin)(𝑐 = 𝑇 → 𝐾 ∈ 𝑎))) |
39 | 38 | ad3antlr 731 |
. . . . 5
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑐 ∈ (𝒫 𝑎 ∩ Fin)if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎 ↔ ∀𝑐 ∈ (𝒫 𝑎 ∩ Fin)(𝑐 = 𝑇 → 𝐾 ∈ 𝑎))) |
40 | 22, 39 | syl5bb 286 |
. . . 4
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (∪ 𝑐 ∈ (𝒫 𝑎 ∩ Fin)if(𝑐 = 𝑇, {𝐾}, ∅) ⊆ 𝑎 ↔ ∀𝑐 ∈ (𝒫 𝑎 ∩ Fin)(𝑐 = 𝑇 → 𝐾 ∈ 𝑎))) |
41 | | inss1 4119 |
. . . . . . . 8
⊢
(𝒫 𝑎 ∩
Fin) ⊆ 𝒫 𝑎 |
42 | 6 | sspwd 4503 |
. . . . . . . 8
⊢ (𝑎 ∈ 𝒫 𝑋 → 𝒫 𝑎 ⊆ 𝒫 𝑋) |
43 | 41, 42 | sstrid 3888 |
. . . . . . 7
⊢ (𝑎 ∈ 𝒫 𝑋 → (𝒫 𝑎 ∩ Fin) ⊆ 𝒫
𝑋) |
44 | 43 | adantl 485 |
. . . . . 6
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (𝒫 𝑎 ∩ Fin) ⊆ 𝒫 𝑋) |
45 | | ralss 3947 |
. . . . . 6
⊢
((𝒫 𝑎 ∩
Fin) ⊆ 𝒫 𝑋
→ (∀𝑐 ∈
(𝒫 𝑎 ∩
Fin)(𝑐 = 𝑇 → 𝐾 ∈ 𝑎) ↔ ∀𝑐 ∈ 𝒫 𝑋(𝑐 ∈ (𝒫 𝑎 ∩ Fin) → (𝑐 = 𝑇 → 𝐾 ∈ 𝑎)))) |
46 | 44, 45 | syl 17 |
. . . . 5
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑐 ∈ (𝒫 𝑎 ∩ Fin)(𝑐 = 𝑇 → 𝐾 ∈ 𝑎) ↔ ∀𝑐 ∈ 𝒫 𝑋(𝑐 ∈ (𝒫 𝑎 ∩ Fin) → (𝑐 = 𝑇 → 𝐾 ∈ 𝑎)))) |
47 | | bi2.04 392 |
. . . . . . 7
⊢ ((𝑐 ∈ (𝒫 𝑎 ∩ Fin) → (𝑐 = 𝑇 → 𝐾 ∈ 𝑎)) ↔ (𝑐 = 𝑇 → (𝑐 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾 ∈ 𝑎))) |
48 | 47 | ralbii 3080 |
. . . . . 6
⊢
(∀𝑐 ∈
𝒫 𝑋(𝑐 ∈ (𝒫 𝑎 ∩ Fin) → (𝑐 = 𝑇 → 𝐾 ∈ 𝑎)) ↔ ∀𝑐 ∈ 𝒫 𝑋(𝑐 = 𝑇 → (𝑐 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾 ∈ 𝑎))) |
49 | | elpwg 4491 |
. . . . . . . . 9
⊢ (𝑇 ∈ Fin → (𝑇 ∈ 𝒫 𝑋 ↔ 𝑇 ⊆ 𝑋)) |
50 | 49 | biimparc 483 |
. . . . . . . 8
⊢ ((𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin) → 𝑇 ∈ 𝒫 𝑋) |
51 | 50 | ad2antlr 727 |
. . . . . . 7
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑇 ∈ 𝒫 𝑋) |
52 | | eleq1 2820 |
. . . . . . . . 9
⊢ (𝑐 = 𝑇 → (𝑐 ∈ (𝒫 𝑎 ∩ Fin) ↔ 𝑇 ∈ (𝒫 𝑎 ∩ Fin))) |
53 | 52 | imbi1d 345 |
. . . . . . . 8
⊢ (𝑐 = 𝑇 → ((𝑐 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾 ∈ 𝑎) ↔ (𝑇 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾 ∈ 𝑎))) |
54 | 53 | ceqsralv 3435 |
. . . . . . 7
⊢ (𝑇 ∈ 𝒫 𝑋 → (∀𝑐 ∈ 𝒫 𝑋(𝑐 = 𝑇 → (𝑐 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾 ∈ 𝑎)) ↔ (𝑇 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾 ∈ 𝑎))) |
55 | 51, 54 | syl 17 |
. . . . . 6
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑐 ∈ 𝒫 𝑋(𝑐 = 𝑇 → (𝑐 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾 ∈ 𝑎)) ↔ (𝑇 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾 ∈ 𝑎))) |
56 | 48, 55 | syl5bb 286 |
. . . . 5
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑐 ∈ 𝒫 𝑋(𝑐 ∈ (𝒫 𝑎 ∩ Fin) → (𝑐 = 𝑇 → 𝐾 ∈ 𝑎)) ↔ (𝑇 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾 ∈ 𝑎))) |
57 | | simplrr 778 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑇 ∈ Fin) |
58 | 57 | biantrud 535 |
. . . . . . . 8
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑇 ∈ 𝒫 𝑎 ↔ (𝑇 ∈ 𝒫 𝑎 ∧ 𝑇 ∈ Fin))) |
59 | | elin 3859 |
. . . . . . . 8
⊢ (𝑇 ∈ (𝒫 𝑎 ∩ Fin) ↔ (𝑇 ∈ 𝒫 𝑎 ∧ 𝑇 ∈ Fin)) |
60 | 58, 59 | bitr4di 292 |
. . . . . . 7
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑇 ∈ 𝒫 𝑎 ↔ 𝑇 ∈ (𝒫 𝑎 ∩ Fin))) |
61 | | vex 3402 |
. . . . . . . 8
⊢ 𝑎 ∈ V |
62 | 61 | elpw2 5213 |
. . . . . . 7
⊢ (𝑇 ∈ 𝒫 𝑎 ↔ 𝑇 ⊆ 𝑎) |
63 | 60, 62 | bitr3di 289 |
. . . . . 6
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑇 ∈ (𝒫 𝑎 ∩ Fin) ↔ 𝑇 ⊆ 𝑎)) |
64 | 63 | imbi1d 345 |
. . . . 5
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑇 ∈ (𝒫 𝑎 ∩ Fin) → 𝐾 ∈ 𝑎) ↔ (𝑇 ⊆ 𝑎 → 𝐾 ∈ 𝑎))) |
65 | 46, 56, 64 | 3bitrd 308 |
. . . 4
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑐 ∈ (𝒫 𝑎 ∩ Fin)(𝑐 = 𝑇 → 𝐾 ∈ 𝑎) ↔ (𝑇 ⊆ 𝑎 → 𝐾 ∈ 𝑎))) |
66 | 21, 40, 65 | 3bitrrd 309 |
. . 3
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑇 ⊆ 𝑎 → 𝐾 ∈ 𝑎) ↔ ∪ ((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎)) |
67 | 66 | rabbidva 3379 |
. 2
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ (𝑇 ⊆ 𝑎 → 𝐾 ∈ 𝑎)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∪
((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎}) |
68 | | simpll 767 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) → 𝑋 ∈ 𝑉) |
69 | | snelpwi 5303 |
. . . . . . 7
⊢ (𝐾 ∈ 𝑋 → {𝐾} ∈ 𝒫 𝑋) |
70 | 69 | ad2antlr 727 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) → {𝐾} ∈ 𝒫 𝑋) |
71 | | 0elpw 5222 |
. . . . . 6
⊢ ∅
∈ 𝒫 𝑋 |
72 | | ifcl 4459 |
. . . . . 6
⊢ (({𝐾} ∈ 𝒫 𝑋 ∧ ∅ ∈ 𝒫
𝑋) → if(𝑏 = 𝑇, {𝐾}, ∅) ∈ 𝒫 𝑋) |
73 | 70, 71, 72 | sylancl 589 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) → if(𝑏 = 𝑇, {𝐾}, ∅) ∈ 𝒫 𝑋) |
74 | 73 | adantr 484 |
. . . 4
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) ∧ 𝑏 ∈ 𝒫 𝑋) → if(𝑏 = 𝑇, {𝐾}, ∅) ∈ 𝒫 𝑋) |
75 | 74 | fmpttd 6889 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) → (𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)):𝒫 𝑋⟶𝒫 𝑋) |
76 | | isacs1i 17031 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ (𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)):𝒫 𝑋⟶𝒫 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∪
((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎} ∈ (ACS‘𝑋)) |
77 | 68, 75, 76 | syl2anc 587 |
. 2
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ ∪
((𝑏 ∈ 𝒫 𝑋 ↦ if(𝑏 = 𝑇, {𝐾}, ∅)) “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎} ∈ (ACS‘𝑋)) |
78 | 67, 77 | eqeltrd 2833 |
1
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ (𝑇 ⊆ 𝑎 → 𝐾 ∈ 𝑎)} ∈ (ACS‘𝑋)) |