MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrt2irr Structured version   Visualization version   GIF version

Theorem sqrt2irr 16225
Description: The square root of 2 is irrational. See zsqrtelqelz 16729 for a generalization to all non-square integers. The proof's core is proven in sqrt2irrlem 16224, which shows that if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd. An older version of this proof was included in The Seventeen Provers of the World compiled by Freek Wiedijk. It is also the first of the "top 100" mathematical theorems whose formalization is tracked by Freek Wiedijk on his Formalizing 100 Theorems page at http://www.cs.ru.nl/~freek/100/ 16224. (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
sqrt2irr (√‘2) ∉ ℚ

Proof of Theorem sqrt2irr
Dummy variables 𝑥 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2nn 12254 . . . . . 6 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
2 breq2 5152 . . . . . . . . 9 (𝑛 = 1 → (𝑧 < 𝑛𝑧 < 1))
32imbi1d 340 . . . . . . . 8 (𝑛 = 1 → ((𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
43ralbidv 3168 . . . . . . 7 (𝑛 = 1 → (∀𝑧 ∈ ℕ (𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
5 breq2 5152 . . . . . . . . 9 (𝑛 = 𝑦 → (𝑧 < 𝑛𝑧 < 𝑦))
65imbi1d 340 . . . . . . . 8 (𝑛 = 𝑦 → ((𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
76ralbidv 3168 . . . . . . 7 (𝑛 = 𝑦 → (∀𝑧 ∈ ℕ (𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
8 breq2 5152 . . . . . . . . 9 (𝑛 = (𝑦 + 1) → (𝑧 < 𝑛𝑧 < (𝑦 + 1)))
98imbi1d 340 . . . . . . . 8 (𝑛 = (𝑦 + 1) → ((𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
109ralbidv 3168 . . . . . . 7 (𝑛 = (𝑦 + 1) → (∀𝑧 ∈ ℕ (𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
11 nnnlt1 12274 . . . . . . . . 9 (𝑧 ∈ ℕ → ¬ 𝑧 < 1)
1211pm2.21d 121 . . . . . . . 8 (𝑧 ∈ ℕ → (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))
1312rgen 3053 . . . . . . 7 𝑧 ∈ ℕ (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))
14 nnrp 13017 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
15 rphalflt 13035 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → (𝑦 / 2) < 𝑦)
1614, 15syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (𝑦 / 2) < 𝑦)
17 breq1 5151 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦 / 2) → (𝑧 < 𝑦 ↔ (𝑦 / 2) < 𝑦))
18 oveq2 7425 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑦 / 2) → (𝑥 / 𝑧) = (𝑥 / (𝑦 / 2)))
1918neeq2d 2991 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑦 / 2) → ((√‘2) ≠ (𝑥 / 𝑧) ↔ (√‘2) ≠ (𝑥 / (𝑦 / 2))))
2019ralbidv 3168 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦 / 2) → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))))
2117, 20imbi12d 343 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦 / 2) → ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑦 / 2) < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
2221rspcv 3603 . . . . . . . . . . . . . 14 ((𝑦 / 2) ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ((𝑦 / 2) < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
2322com13 88 . . . . . . . . . . . . 13 ((𝑦 / 2) < 𝑦 → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
2416, 23syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
25 simpr 483 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (√‘2) = (𝑧 / 𝑦))
26 zcn 12593 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
2726ad2antlr 725 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑧 ∈ ℂ)
28 nncn 12250 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2928ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑦 ∈ ℂ)
30 2cnd 12320 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 2 ∈ ℂ)
31 nnne0 12276 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
3231ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑦 ≠ 0)
33 2ne0 12346 . . . . . . . . . . . . . . . . . . 19 2 ≠ 0
3433a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 2 ≠ 0)
3527, 29, 30, 32, 34divcan7d 12048 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ((𝑧 / 2) / (𝑦 / 2)) = (𝑧 / 𝑦))
3625, 35eqtr4d 2768 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (√‘2) = ((𝑧 / 2) / (𝑦 / 2)))
37 simplr 767 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑧 ∈ ℤ)
38 simpll 765 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑦 ∈ ℕ)
3937, 38, 25sqrt2irrlem 16224 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ((𝑧 / 2) ∈ ℤ ∧ (𝑦 / 2) ∈ ℕ))
4039simprd 494 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (𝑦 / 2) ∈ ℕ)
4139simpld 493 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (𝑧 / 2) ∈ ℤ)
42 oveq1 7424 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑧 / 2) → (𝑥 / (𝑦 / 2)) = ((𝑧 / 2) / (𝑦 / 2)))
4342neeq2d 2991 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑧 / 2) → ((√‘2) ≠ (𝑥 / (𝑦 / 2)) ↔ (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4443rspcv 3603 . . . . . . . . . . . . . . . . . . 19 ((𝑧 / 2) ∈ ℤ → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)) → (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4541, 44syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)) → (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4640, 45embantd 59 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))) → (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4746necon2bd 2946 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ((√‘2) = ((𝑧 / 2) / (𝑦 / 2)) → ¬ ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
4836, 47mpd 15 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ¬ ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))))
4948ex 411 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((√‘2) = (𝑧 / 𝑦) → ¬ ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
5049necon2ad 2945 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))) → (√‘2) ≠ (𝑧 / 𝑦)))
5150ralrimdva 3144 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))) → ∀𝑧 ∈ ℤ (√‘2) ≠ (𝑧 / 𝑦)))
5224, 51syld 47 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑧 ∈ ℤ (√‘2) ≠ (𝑧 / 𝑦)))
53 oveq1 7424 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥 / 𝑦) = (𝑧 / 𝑦))
5453neeq2d 2991 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((√‘2) ≠ (𝑥 / 𝑦) ↔ (√‘2) ≠ (𝑧 / 𝑦)))
5554cbvralvw 3225 . . . . . . . . . . 11 (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦) ↔ ∀𝑧 ∈ ℤ (√‘2) ≠ (𝑧 / 𝑦))
5652, 55imbitrrdi 251 . . . . . . . . . 10 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦)))
57 oveq2 7425 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (𝑥 / 𝑧) = (𝑥 / 𝑦))
5857neeq2d 2991 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((√‘2) ≠ (𝑥 / 𝑧) ↔ (√‘2) ≠ (𝑥 / 𝑦)))
5958ralbidv 3168 . . . . . . . . . . 11 (𝑧 = 𝑦 → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦)))
6059ceqsralv 3504 . . . . . . . . . 10 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦)))
6156, 60sylibrd 258 . . . . . . . . 9 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
6261ancld 549 . . . . . . . 8 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
63 nnleltp1 12647 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧𝑦𝑧 < (𝑦 + 1)))
64 nnre 12249 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
65 nnre 12249 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
66 leloe 11330 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧𝑦 ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
6764, 65, 66syl2an 594 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧𝑦 ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
6863, 67bitr3d 280 . . . . . . . . . . . . 13 ((𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧 < (𝑦 + 1) ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
6968ancoms 457 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 < (𝑦 + 1) ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
7069imbi1d 340 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑧 < 𝑦𝑧 = 𝑦) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
71 jaob 959 . . . . . . . . . . 11 (((𝑧 < 𝑦𝑧 = 𝑦) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
7270, 71bitrdi 286 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
7372ralbidva 3166 . . . . . . . . 9 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
74 r19.26 3101 . . . . . . . . 9 (∀𝑧 ∈ ℕ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))) ↔ (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
7573, 74bitrdi 286 . . . . . . . 8 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
7662, 75sylibrd 258 . . . . . . 7 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
774, 7, 10, 10, 13, 76nnind 12260 . . . . . 6 ((𝑦 + 1) ∈ ℕ → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))
781, 77syl 17 . . . . 5 (𝑦 ∈ ℕ → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))
7965ltp1d 12174 . . . . 5 (𝑦 ∈ ℕ → 𝑦 < (𝑦 + 1))
80 breq1 5151 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 < (𝑦 + 1) ↔ 𝑦 < (𝑦 + 1)))
81 df-ne 2931 . . . . . . . . . 10 ((√‘2) ≠ (𝑥 / 𝑦) ↔ ¬ (√‘2) = (𝑥 / 𝑦))
8258, 81bitrdi 286 . . . . . . . . 9 (𝑧 = 𝑦 → ((√‘2) ≠ (𝑥 / 𝑧) ↔ ¬ (√‘2) = (𝑥 / 𝑦)))
8382ralbidv 3168 . . . . . . . 8 (𝑧 = 𝑦 → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ∀𝑥 ∈ ℤ ¬ (√‘2) = (𝑥 / 𝑦)))
84 ralnex 3062 . . . . . . . 8 (∀𝑥 ∈ ℤ ¬ (√‘2) = (𝑥 / 𝑦) ↔ ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
8583, 84bitrdi 286 . . . . . . 7 (𝑧 = 𝑦 → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦)))
8680, 85imbi12d 343 . . . . . 6 (𝑧 = 𝑦 → ((𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑦 < (𝑦 + 1) → ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))))
8786rspcv 3603 . . . . 5 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → (𝑦 < (𝑦 + 1) → ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))))
8878, 79, 87mp2d 49 . . . 4 (𝑦 ∈ ℕ → ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
8988nrex 3064 . . 3 ¬ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦)
90 elq 12964 . . . 4 ((√‘2) ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (√‘2) = (𝑥 / 𝑦))
91 rexcom 3278 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (√‘2) = (𝑥 / 𝑦) ↔ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
9290, 91bitri 274 . . 3 ((√‘2) ∈ ℚ ↔ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
9389, 92mtbir 322 . 2 ¬ (√‘2) ∈ ℚ
9493nelir 3039 1 (√‘2) ∉ ℚ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2930  wnel 3036  wral 3051  wrex 3060   class class class wbr 5148  cfv 6547  (class class class)co 7417  cc 11136  cr 11137  0cc0 11138  1c1 11139   + caddc 11141   < clt 11278  cle 11279   / cdiv 11901  cn 12242  2c2 12297  cz 12588  cq 12962  +crp 13006  csqrt 15212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-sup 9465  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-q 12963  df-rp 13007  df-seq 13999  df-exp 14059  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215
This theorem is referenced by:  sqrt2irr0  16227  nthruc  16228  2sq2  27396
  Copyright terms: Public domain W3C validator