MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrt2irr Structured version   Visualization version   GIF version

Theorem sqrt2irr 16150
Description: The square root of 2 is irrational. See zsqrtelqelz 16661 for a generalization to all non-square integers. The proof's core is proven in sqrt2irrlem 16149, which shows that if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd. An older version of this proof was included in The Seventeen Provers of the World compiled by Freek Wiedijk. It is also the first of the "top 100" mathematical theorems whose formalization is tracked by Freek Wiedijk on his Formalizing 100 Theorems page at http://www.cs.ru.nl/~freek/100/ 16149. (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
sqrt2irr (√‘2) ∉ ℚ

Proof of Theorem sqrt2irr
Dummy variables 𝑥 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2nn 12129 . . . . . 6 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
2 breq2 5093 . . . . . . . . 9 (𝑛 = 1 → (𝑧 < 𝑛𝑧 < 1))
32imbi1d 341 . . . . . . . 8 (𝑛 = 1 → ((𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
43ralbidv 3153 . . . . . . 7 (𝑛 = 1 → (∀𝑧 ∈ ℕ (𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
5 breq2 5093 . . . . . . . . 9 (𝑛 = 𝑦 → (𝑧 < 𝑛𝑧 < 𝑦))
65imbi1d 341 . . . . . . . 8 (𝑛 = 𝑦 → ((𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
76ralbidv 3153 . . . . . . 7 (𝑛 = 𝑦 → (∀𝑧 ∈ ℕ (𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
8 breq2 5093 . . . . . . . . 9 (𝑛 = (𝑦 + 1) → (𝑧 < 𝑛𝑧 < (𝑦 + 1)))
98imbi1d 341 . . . . . . . 8 (𝑛 = (𝑦 + 1) → ((𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
109ralbidv 3153 . . . . . . 7 (𝑛 = (𝑦 + 1) → (∀𝑧 ∈ ℕ (𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
11 nnnlt1 12149 . . . . . . . . 9 (𝑧 ∈ ℕ → ¬ 𝑧 < 1)
1211pm2.21d 121 . . . . . . . 8 (𝑧 ∈ ℕ → (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))
1312rgen 3047 . . . . . . 7 𝑧 ∈ ℕ (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))
14 nnrp 12894 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
15 rphalflt 12913 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → (𝑦 / 2) < 𝑦)
1614, 15syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (𝑦 / 2) < 𝑦)
17 breq1 5092 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦 / 2) → (𝑧 < 𝑦 ↔ (𝑦 / 2) < 𝑦))
18 oveq2 7349 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑦 / 2) → (𝑥 / 𝑧) = (𝑥 / (𝑦 / 2)))
1918neeq2d 2986 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑦 / 2) → ((√‘2) ≠ (𝑥 / 𝑧) ↔ (√‘2) ≠ (𝑥 / (𝑦 / 2))))
2019ralbidv 3153 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦 / 2) → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))))
2117, 20imbi12d 344 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦 / 2) → ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑦 / 2) < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
2221rspcv 3571 . . . . . . . . . . . . . 14 ((𝑦 / 2) ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ((𝑦 / 2) < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
2322com13 88 . . . . . . . . . . . . 13 ((𝑦 / 2) < 𝑦 → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
2416, 23syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
25 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (√‘2) = (𝑧 / 𝑦))
26 zcn 12465 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
2726ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑧 ∈ ℂ)
28 nncn 12125 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2928ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑦 ∈ ℂ)
30 2cnd 12195 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 2 ∈ ℂ)
31 nnne0 12151 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
3231ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑦 ≠ 0)
33 2ne0 12221 . . . . . . . . . . . . . . . . . . 19 2 ≠ 0
3433a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 2 ≠ 0)
3527, 29, 30, 32, 34divcan7d 11917 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ((𝑧 / 2) / (𝑦 / 2)) = (𝑧 / 𝑦))
3625, 35eqtr4d 2768 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (√‘2) = ((𝑧 / 2) / (𝑦 / 2)))
37 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑧 ∈ ℤ)
38 simpll 766 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑦 ∈ ℕ)
3937, 38, 25sqrt2irrlem 16149 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ((𝑧 / 2) ∈ ℤ ∧ (𝑦 / 2) ∈ ℕ))
4039simprd 495 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (𝑦 / 2) ∈ ℕ)
4139simpld 494 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (𝑧 / 2) ∈ ℤ)
42 oveq1 7348 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑧 / 2) → (𝑥 / (𝑦 / 2)) = ((𝑧 / 2) / (𝑦 / 2)))
4342neeq2d 2986 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑧 / 2) → ((√‘2) ≠ (𝑥 / (𝑦 / 2)) ↔ (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4443rspcv 3571 . . . . . . . . . . . . . . . . . . 19 ((𝑧 / 2) ∈ ℤ → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)) → (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4541, 44syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)) → (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4640, 45embantd 59 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))) → (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4746necon2bd 2942 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ((√‘2) = ((𝑧 / 2) / (𝑦 / 2)) → ¬ ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
4836, 47mpd 15 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ¬ ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))))
4948ex 412 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((√‘2) = (𝑧 / 𝑦) → ¬ ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
5049necon2ad 2941 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))) → (√‘2) ≠ (𝑧 / 𝑦)))
5150ralrimdva 3130 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))) → ∀𝑧 ∈ ℤ (√‘2) ≠ (𝑧 / 𝑦)))
5224, 51syld 47 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑧 ∈ ℤ (√‘2) ≠ (𝑧 / 𝑦)))
53 oveq1 7348 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥 / 𝑦) = (𝑧 / 𝑦))
5453neeq2d 2986 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((√‘2) ≠ (𝑥 / 𝑦) ↔ (√‘2) ≠ (𝑧 / 𝑦)))
5554cbvralvw 3208 . . . . . . . . . . 11 (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦) ↔ ∀𝑧 ∈ ℤ (√‘2) ≠ (𝑧 / 𝑦))
5652, 55imbitrrdi 252 . . . . . . . . . 10 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦)))
57 oveq2 7349 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (𝑥 / 𝑧) = (𝑥 / 𝑦))
5857neeq2d 2986 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((√‘2) ≠ (𝑥 / 𝑧) ↔ (√‘2) ≠ (𝑥 / 𝑦)))
5958ralbidv 3153 . . . . . . . . . . 11 (𝑧 = 𝑦 → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦)))
6059ceqsralv 3475 . . . . . . . . . 10 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦)))
6156, 60sylibrd 259 . . . . . . . . 9 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
6261ancld 550 . . . . . . . 8 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
63 nnleltp1 12520 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧𝑦𝑧 < (𝑦 + 1)))
64 nnre 12124 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
65 nnre 12124 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
66 leloe 11191 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧𝑦 ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
6764, 65, 66syl2an 596 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧𝑦 ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
6863, 67bitr3d 281 . . . . . . . . . . . . 13 ((𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧 < (𝑦 + 1) ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
6968ancoms 458 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 < (𝑦 + 1) ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
7069imbi1d 341 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑧 < 𝑦𝑧 = 𝑦) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
71 jaob 963 . . . . . . . . . . 11 (((𝑧 < 𝑦𝑧 = 𝑦) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
7270, 71bitrdi 287 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
7372ralbidva 3151 . . . . . . . . 9 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
74 r19.26 3090 . . . . . . . . 9 (∀𝑧 ∈ ℕ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))) ↔ (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
7573, 74bitrdi 287 . . . . . . . 8 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
7662, 75sylibrd 259 . . . . . . 7 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
774, 7, 10, 10, 13, 76nnind 12135 . . . . . 6 ((𝑦 + 1) ∈ ℕ → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))
781, 77syl 17 . . . . 5 (𝑦 ∈ ℕ → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))
7965ltp1d 12044 . . . . 5 (𝑦 ∈ ℕ → 𝑦 < (𝑦 + 1))
80 breq1 5092 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 < (𝑦 + 1) ↔ 𝑦 < (𝑦 + 1)))
81 df-ne 2927 . . . . . . . . . 10 ((√‘2) ≠ (𝑥 / 𝑦) ↔ ¬ (√‘2) = (𝑥 / 𝑦))
8258, 81bitrdi 287 . . . . . . . . 9 (𝑧 = 𝑦 → ((√‘2) ≠ (𝑥 / 𝑧) ↔ ¬ (√‘2) = (𝑥 / 𝑦)))
8382ralbidv 3153 . . . . . . . 8 (𝑧 = 𝑦 → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ∀𝑥 ∈ ℤ ¬ (√‘2) = (𝑥 / 𝑦)))
84 ralnex 3056 . . . . . . . 8 (∀𝑥 ∈ ℤ ¬ (√‘2) = (𝑥 / 𝑦) ↔ ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
8583, 84bitrdi 287 . . . . . . 7 (𝑧 = 𝑦 → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦)))
8680, 85imbi12d 344 . . . . . 6 (𝑧 = 𝑦 → ((𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑦 < (𝑦 + 1) → ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))))
8786rspcv 3571 . . . . 5 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → (𝑦 < (𝑦 + 1) → ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))))
8878, 79, 87mp2d 49 . . . 4 (𝑦 ∈ ℕ → ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
8988nrex 3058 . . 3 ¬ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦)
90 elq 12840 . . . 4 ((√‘2) ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (√‘2) = (𝑥 / 𝑦))
91 rexcom 3259 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (√‘2) = (𝑥 / 𝑦) ↔ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
9290, 91bitri 275 . . 3 ((√‘2) ∈ ℚ ↔ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
9389, 92mtbir 323 . 2 ¬ (√‘2) ∈ ℚ
9493nelir 3033 1 (√‘2) ∉ ℚ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2110  wne 2926  wnel 3030  wral 3045  wrex 3054   class class class wbr 5089  cfv 6477  (class class class)co 7341  cc 10996  cr 10997  0cc0 10998  1c1 10999   + caddc 11001   < clt 11138  cle 11139   / cdiv 11766  cn 12117  2c2 12172  cz 12460  cq 12838  +crp 12882  csqrt 15132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-z 12461  df-uz 12725  df-q 12839  df-rp 12883  df-seq 13901  df-exp 13961  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135
This theorem is referenced by:  sqrt2irr0  16152  nthruc  16153  2sq2  27364
  Copyright terms: Public domain W3C validator