Step | Hyp | Ref
| Expression |
1 | | peano2nn 11985 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈
ℕ) |
2 | | breq2 5078 |
. . . . . . . . 9
⊢ (𝑛 = 1 → (𝑧 < 𝑛 ↔ 𝑧 < 1)) |
3 | 2 | imbi1d 342 |
. . . . . . . 8
⊢ (𝑛 = 1 → ((𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))) |
4 | 3 | ralbidv 3112 |
. . . . . . 7
⊢ (𝑛 = 1 → (∀𝑧 ∈ ℕ (𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))) |
5 | | breq2 5078 |
. . . . . . . . 9
⊢ (𝑛 = 𝑦 → (𝑧 < 𝑛 ↔ 𝑧 < 𝑦)) |
6 | 5 | imbi1d 342 |
. . . . . . . 8
⊢ (𝑛 = 𝑦 → ((𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))) |
7 | 6 | ralbidv 3112 |
. . . . . . 7
⊢ (𝑛 = 𝑦 → (∀𝑧 ∈ ℕ (𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))) |
8 | | breq2 5078 |
. . . . . . . . 9
⊢ (𝑛 = (𝑦 + 1) → (𝑧 < 𝑛 ↔ 𝑧 < (𝑦 + 1))) |
9 | 8 | imbi1d 342 |
. . . . . . . 8
⊢ (𝑛 = (𝑦 + 1) → ((𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))) |
10 | 9 | ralbidv 3112 |
. . . . . . 7
⊢ (𝑛 = (𝑦 + 1) → (∀𝑧 ∈ ℕ (𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))) |
11 | | nnnlt1 12005 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℕ → ¬
𝑧 < 1) |
12 | 11 | pm2.21d 121 |
. . . . . . . 8
⊢ (𝑧 ∈ ℕ → (𝑧 < 1 → ∀𝑥 ∈ ℤ
(√‘2) ≠ (𝑥 /
𝑧))) |
13 | 12 | rgen 3074 |
. . . . . . 7
⊢
∀𝑧 ∈
ℕ (𝑧 < 1 →
∀𝑥 ∈ ℤ
(√‘2) ≠ (𝑥 /
𝑧)) |
14 | | nnrp 12741 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ+) |
15 | | rphalflt 12759 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ+
→ (𝑦 / 2) < 𝑦) |
16 | 14, 15 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → (𝑦 / 2) < 𝑦) |
17 | | breq1 5077 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑦 / 2) → (𝑧 < 𝑦 ↔ (𝑦 / 2) < 𝑦)) |
18 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑦 / 2) → (𝑥 / 𝑧) = (𝑥 / (𝑦 / 2))) |
19 | 18 | neeq2d 3004 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑦 / 2) → ((√‘2) ≠ (𝑥 / 𝑧) ↔ (√‘2) ≠ (𝑥 / (𝑦 / 2)))) |
20 | 19 | ralbidv 3112 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑦 / 2) → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))) |
21 | 17, 20 | imbi12d 345 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑦 / 2) → ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑦 / 2) < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))))) |
22 | 21 | rspcv 3557 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 / 2) ∈ ℕ →
(∀𝑧 ∈ ℕ
(𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ((𝑦 / 2) < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))))) |
23 | 22 | com13 88 |
. . . . . . . . . . . . 13
⊢ ((𝑦 / 2) < 𝑦 → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ
(√‘2) ≠ (𝑥 /
(𝑦 /
2))))) |
24 | 16, 23 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ →
(∀𝑧 ∈ ℕ
(𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ
(√‘2) ≠ (𝑥 /
(𝑦 /
2))))) |
25 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧
(√‘2) = (𝑧 /
𝑦)) →
(√‘2) = (𝑧 /
𝑦)) |
26 | | zcn 12324 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℤ → 𝑧 ∈
ℂ) |
27 | 26 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧
(√‘2) = (𝑧 /
𝑦)) → 𝑧 ∈
ℂ) |
28 | | nncn 11981 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℂ) |
29 | 28 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧
(√‘2) = (𝑧 /
𝑦)) → 𝑦 ∈
ℂ) |
30 | | 2cnd 12051 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧
(√‘2) = (𝑧 /
𝑦)) → 2 ∈
ℂ) |
31 | | nnne0 12007 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ℕ → 𝑦 ≠ 0) |
32 | 31 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧
(√‘2) = (𝑧 /
𝑦)) → 𝑦 ≠ 0) |
33 | | 2ne0 12077 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ≠
0 |
34 | 33 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧
(√‘2) = (𝑧 /
𝑦)) → 2 ≠
0) |
35 | 27, 29, 30, 32, 34 | divcan7d 11779 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧
(√‘2) = (𝑧 /
𝑦)) → ((𝑧 / 2) / (𝑦 / 2)) = (𝑧 / 𝑦)) |
36 | 25, 35 | eqtr4d 2781 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧
(√‘2) = (𝑧 /
𝑦)) →
(√‘2) = ((𝑧 /
2) / (𝑦 /
2))) |
37 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧
(√‘2) = (𝑧 /
𝑦)) → 𝑧 ∈
ℤ) |
38 | | simpll 764 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧
(√‘2) = (𝑧 /
𝑦)) → 𝑦 ∈
ℕ) |
39 | 37, 38, 25 | sqrt2irrlem 15957 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧
(√‘2) = (𝑧 /
𝑦)) → ((𝑧 / 2) ∈ ℤ ∧
(𝑦 / 2) ∈
ℕ)) |
40 | 39 | simprd 496 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧
(√‘2) = (𝑧 /
𝑦)) → (𝑦 / 2) ∈
ℕ) |
41 | 39 | simpld 495 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧
(√‘2) = (𝑧 /
𝑦)) → (𝑧 / 2) ∈
ℤ) |
42 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = (𝑧 / 2) → (𝑥 / (𝑦 / 2)) = ((𝑧 / 2) / (𝑦 / 2))) |
43 | 42 | neeq2d 3004 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑧 / 2) → ((√‘2) ≠ (𝑥 / (𝑦 / 2)) ↔ (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2)))) |
44 | 43 | rspcv 3557 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 / 2) ∈ ℤ →
(∀𝑥 ∈ ℤ
(√‘2) ≠ (𝑥 /
(𝑦 / 2)) →
(√‘2) ≠ ((𝑧
/ 2) / (𝑦 /
2)))) |
45 | 41, 44 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧
(√‘2) = (𝑧 /
𝑦)) → (∀𝑥 ∈ ℤ
(√‘2) ≠ (𝑥 /
(𝑦 / 2)) →
(√‘2) ≠ ((𝑧
/ 2) / (𝑦 /
2)))) |
46 | 40, 45 | embantd 59 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧
(√‘2) = (𝑧 /
𝑦)) → (((𝑦 / 2) ∈ ℕ →
∀𝑥 ∈ ℤ
(√‘2) ≠ (𝑥 /
(𝑦 / 2))) →
(√‘2) ≠ ((𝑧
/ 2) / (𝑦 /
2)))) |
47 | 46 | necon2bd 2959 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧
(√‘2) = (𝑧 /
𝑦)) →
((√‘2) = ((𝑧 /
2) / (𝑦 / 2)) → ¬
((𝑦 / 2) ∈ ℕ
→ ∀𝑥 ∈
ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))))) |
48 | 36, 47 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧
(√‘2) = (𝑧 /
𝑦)) → ¬ ((𝑦 / 2) ∈ ℕ →
∀𝑥 ∈ ℤ
(√‘2) ≠ (𝑥 /
(𝑦 / 2)))) |
49 | 48 | ex 413 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
((√‘2) = (𝑧 /
𝑦) → ¬ ((𝑦 / 2) ∈ ℕ →
∀𝑥 ∈ ℤ
(√‘2) ≠ (𝑥 /
(𝑦 /
2))))) |
50 | 49 | necon2ad 2958 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((𝑦 / 2) ∈ ℕ →
∀𝑥 ∈ ℤ
(√‘2) ≠ (𝑥 /
(𝑦 / 2))) →
(√‘2) ≠ (𝑧 /
𝑦))) |
51 | 50 | ralrimdva 3106 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ → (((𝑦 / 2) ∈ ℕ →
∀𝑥 ∈ ℤ
(√‘2) ≠ (𝑥 /
(𝑦 / 2))) →
∀𝑧 ∈ ℤ
(√‘2) ≠ (𝑧 /
𝑦))) |
52 | 24, 51 | syld 47 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ →
(∀𝑧 ∈ ℕ
(𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑧 ∈ ℤ (√‘2) ≠ (𝑧 / 𝑦))) |
53 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑥 / 𝑦) = (𝑧 / 𝑦)) |
54 | 53 | neeq2d 3004 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((√‘2) ≠ (𝑥 / 𝑦) ↔ (√‘2) ≠ (𝑧 / 𝑦))) |
55 | 54 | cbvralvw 3383 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
ℤ (√‘2) ≠ (𝑥 / 𝑦) ↔ ∀𝑧 ∈ ℤ (√‘2) ≠ (𝑧 / 𝑦)) |
56 | 52, 55 | syl6ibr 251 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ →
(∀𝑧 ∈ ℕ
(𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦))) |
57 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑦 → (𝑥 / 𝑧) = (𝑥 / 𝑦)) |
58 | 57 | neeq2d 3004 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑦 → ((√‘2) ≠ (𝑥 / 𝑧) ↔ (√‘2) ≠ (𝑥 / 𝑦))) |
59 | 58 | ralbidv 3112 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦))) |
60 | 59 | ceqsralv 3469 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ →
(∀𝑧 ∈ ℕ
(𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦))) |
61 | 56, 60 | sylibrd 258 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ →
(∀𝑧 ∈ ℕ
(𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))) |
62 | 61 | ancld 551 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ →
(∀𝑧 ∈ ℕ
(𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))) |
63 | | nnleltp1 12375 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧 ≤ 𝑦 ↔ 𝑧 < (𝑦 + 1))) |
64 | | nnre 11980 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℝ) |
65 | | nnre 11980 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ) |
66 | | leloe 11061 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ≤ 𝑦 ↔ (𝑧 < 𝑦 ∨ 𝑧 = 𝑦))) |
67 | 64, 65, 66 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧 ≤ 𝑦 ↔ (𝑧 < 𝑦 ∨ 𝑧 = 𝑦))) |
68 | 63, 67 | bitr3d 280 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧 < (𝑦 + 1) ↔ (𝑧 < 𝑦 ∨ 𝑧 = 𝑦))) |
69 | 68 | ancoms 459 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 < (𝑦 + 1) ↔ (𝑧 < 𝑦 ∨ 𝑧 = 𝑦))) |
70 | 69 | imbi1d 342 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑧 < 𝑦 ∨ 𝑧 = 𝑦) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))) |
71 | | jaob 959 |
. . . . . . . . . . 11
⊢ (((𝑧 < 𝑦 ∨ 𝑧 = 𝑦) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))) |
72 | 70, 71 | bitrdi 287 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))) |
73 | 72 | ralbidva 3111 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ →
(∀𝑧 ∈ ℕ
(𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))) |
74 | | r19.26 3095 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
ℕ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ
(√‘2) ≠ (𝑥 /
𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))) ↔ (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))) |
75 | 73, 74 | bitrdi 287 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ →
(∀𝑧 ∈ ℕ
(𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))) |
76 | 62, 75 | sylibrd 258 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ →
(∀𝑧 ∈ ℕ
(𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))) |
77 | 4, 7, 10, 10, 13, 76 | nnind 11991 |
. . . . . 6
⊢ ((𝑦 + 1) ∈ ℕ →
∀𝑧 ∈ ℕ
(𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))) |
78 | 1, 77 | syl 17 |
. . . . 5
⊢ (𝑦 ∈ ℕ →
∀𝑧 ∈ ℕ
(𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))) |
79 | 65 | ltp1d 11905 |
. . . . 5
⊢ (𝑦 ∈ ℕ → 𝑦 < (𝑦 + 1)) |
80 | | breq1 5077 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑧 < (𝑦 + 1) ↔ 𝑦 < (𝑦 + 1))) |
81 | | df-ne 2944 |
. . . . . . . . . 10
⊢
((√‘2) ≠ (𝑥 / 𝑦) ↔ ¬ (√‘2) = (𝑥 / 𝑦)) |
82 | 58, 81 | bitrdi 287 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → ((√‘2) ≠ (𝑥 / 𝑧) ↔ ¬ (√‘2) = (𝑥 / 𝑦))) |
83 | 82 | ralbidv 3112 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ∀𝑥 ∈ ℤ ¬ (√‘2) =
(𝑥 / 𝑦))) |
84 | | ralnex 3167 |
. . . . . . . 8
⊢
(∀𝑥 ∈
ℤ ¬ (√‘2) = (𝑥 / 𝑦) ↔ ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦)) |
85 | 83, 84 | bitrdi 287 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))) |
86 | 80, 85 | imbi12d 345 |
. . . . . 6
⊢ (𝑧 = 𝑦 → ((𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑦 < (𝑦 + 1) → ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦)))) |
87 | 86 | rspcv 3557 |
. . . . 5
⊢ (𝑦 ∈ ℕ →
(∀𝑧 ∈ ℕ
(𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → (𝑦 < (𝑦 + 1) → ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦)))) |
88 | 78, 79, 87 | mp2d 49 |
. . . 4
⊢ (𝑦 ∈ ℕ → ¬
∃𝑥 ∈ ℤ
(√‘2) = (𝑥 /
𝑦)) |
89 | 88 | nrex 3197 |
. . 3
⊢ ¬
∃𝑦 ∈ ℕ
∃𝑥 ∈ ℤ
(√‘2) = (𝑥 /
𝑦) |
90 | | elq 12690 |
. . . 4
⊢
((√‘2) ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (√‘2) = (𝑥 / 𝑦)) |
91 | | rexcom 3234 |
. . . 4
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℕ (√‘2) = (𝑥 / 𝑦) ↔ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦)) |
92 | 90, 91 | bitri 274 |
. . 3
⊢
((√‘2) ∈ ℚ ↔ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦)) |
93 | 89, 92 | mtbir 323 |
. 2
⊢ ¬
(√‘2) ∈ ℚ |
94 | 93 | nelir 3052 |
1
⊢
(√‘2) ∉ ℚ |