Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppind Structured version   Visualization version   GIF version

Theorem fsuppind 42613
Description: Induction on functions 𝐹:𝐴𝐵 with finite support, or in other words the base set of the free module (see frlmelbas 21716 and frlmplusgval 21724). This theorem is structurally general for polynomial proof usage (see mplelbas 21951 and mpladd 21969). Note that hypothesis 0 is redundant when 𝐼 is nonempty. (Contributed by SN, 18-May-2024.)
Hypotheses
Ref Expression
fsuppind.b 𝐵 = (Base‘𝐺)
fsuppind.z 0 = (0g𝐺)
fsuppind.p + = (+g𝐺)
fsuppind.g (𝜑𝐺 ∈ Grp)
fsuppind.v (𝜑𝐼𝑉)
fsuppind.0 (𝜑 → (𝐼 × { 0 }) ∈ 𝐻)
fsuppind.1 ((𝜑 ∧ (𝑎𝐼𝑏𝐵)) → (𝑥𝐼 ↦ if(𝑥 = 𝑎, 𝑏, 0 )) ∈ 𝐻)
fsuppind.2 ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥f + 𝑦) ∈ 𝐻)
Assertion
Ref Expression
fsuppind ((𝜑 ∧ (𝑋:𝐼𝐵𝑋 finSupp 0 )) → 𝑋𝐻)
Distinct variable groups:   𝑥, + ,𝑦   0 ,𝑎,𝑏,𝑥   𝑦, 0   𝐼,𝑎,𝑏,𝑥   𝑦,𝐼   𝐻,𝑏   𝑦,𝐻,𝑥   𝐻,𝑎   𝜑,𝑥,𝑦   𝜑,𝑎,𝑏   𝐵,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐵(𝑦)   + (𝑎,𝑏)   𝐺(𝑥,𝑦,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑎,𝑏)   𝑋(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem fsuppind
Dummy variables 𝑧 𝑐 𝑚 𝑣 𝑖 𝑗 𝑛 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsuppind.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
21fvexi 6890 . . . . . . . . . 10 𝐵 ∈ V
32a1i 11 . . . . . . . . 9 (𝜑𝐵 ∈ V)
4 fsuppind.v . . . . . . . . 9 (𝜑𝐼𝑉)
53, 4elmapd 8854 . . . . . . . 8 (𝜑 → (𝑋 ∈ (𝐵m 𝐼) ↔ 𝑋:𝐼𝐵))
65adantr 480 . . . . . . 7 ((𝜑 ∧ (♯‘(𝑋 supp 0 )) ∈ ℕ) → (𝑋 ∈ (𝐵m 𝐼) ↔ 𝑋:𝐼𝐵))
7 eqeq1 2739 . . . . . . . . . . . . . . . 16 (𝑖 = 1 → (𝑖 = (♯‘( supp 0 )) ↔ 1 = (♯‘( supp 0 ))))
87imbi1d 341 . . . . . . . . . . . . . . 15 (𝑖 = 1 → ((𝑖 = (♯‘( supp 0 )) → 𝐻) ↔ (1 = (♯‘( supp 0 )) → 𝐻)))
98ralbidv 3163 . . . . . . . . . . . . . 14 (𝑖 = 1 → (∀ ∈ (𝐵m 𝐼)(𝑖 = (♯‘( supp 0 )) → 𝐻) ↔ ∀ ∈ (𝐵m 𝐼)(1 = (♯‘( supp 0 )) → 𝐻)))
10 eqeq1 2739 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (𝑖 = (♯‘( supp 0 )) ↔ 𝑗 = (♯‘( supp 0 ))))
1110imbi1d 341 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → ((𝑖 = (♯‘( supp 0 )) → 𝐻) ↔ (𝑗 = (♯‘( supp 0 )) → 𝐻)))
1211ralbidv 3163 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (∀ ∈ (𝐵m 𝐼)(𝑖 = (♯‘( supp 0 )) → 𝐻) ↔ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)))
13 eqeq1 2739 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 + 1) → (𝑖 = (♯‘( supp 0 )) ↔ (𝑗 + 1) = (♯‘( supp 0 ))))
1413imbi1d 341 . . . . . . . . . . . . . . 15 (𝑖 = (𝑗 + 1) → ((𝑖 = (♯‘( supp 0 )) → 𝐻) ↔ ((𝑗 + 1) = (♯‘( supp 0 )) → 𝐻)))
1514ralbidv 3163 . . . . . . . . . . . . . 14 (𝑖 = (𝑗 + 1) → (∀ ∈ (𝐵m 𝐼)(𝑖 = (♯‘( supp 0 )) → 𝐻) ↔ ∀ ∈ (𝐵m 𝐼)((𝑗 + 1) = (♯‘( supp 0 )) → 𝐻)))
16 eqeq1 2739 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑛 → (𝑖 = (♯‘( supp 0 )) ↔ 𝑛 = (♯‘( supp 0 ))))
1716imbi1d 341 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → ((𝑖 = (♯‘( supp 0 )) → 𝐻) ↔ (𝑛 = (♯‘( supp 0 )) → 𝐻)))
1817ralbidv 3163 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (∀ ∈ (𝐵m 𝐼)(𝑖 = (♯‘( supp 0 )) → 𝐻) ↔ ∀ ∈ (𝐵m 𝐼)(𝑛 = (♯‘( supp 0 )) → 𝐻)))
19 eqcom 2742 . . . . . . . . . . . . . . . . 17 (1 = (♯‘( supp 0 )) ↔ (♯‘( supp 0 )) = 1)
20 ovex 7438 . . . . . . . . . . . . . . . . . 18 ( supp 0 ) ∈ V
21 euhash1 14438 . . . . . . . . . . . . . . . . . 18 (( supp 0 ) ∈ V → ((♯‘( supp 0 )) = 1 ↔ ∃!𝑐 𝑐 ∈ ( supp 0 )))
2220, 21ax-mp 5 . . . . . . . . . . . . . . . . 17 ((♯‘( supp 0 )) = 1 ↔ ∃!𝑐 𝑐 ∈ ( supp 0 ))
2319, 22bitri 275 . . . . . . . . . . . . . . . 16 (1 = (♯‘( supp 0 )) ↔ ∃!𝑐 𝑐 ∈ ( supp 0 ))
24 elmapfn 8879 . . . . . . . . . . . . . . . . . . . . 21 ( ∈ (𝐵m 𝐼) → Fn 𝐼)
2524adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∈ (𝐵m 𝐼)) → Fn 𝐼)
264adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∈ (𝐵m 𝐼)) → 𝐼𝑉)
27 fsuppind.z . . . . . . . . . . . . . . . . . . . . . 22 0 = (0g𝐺)
2827fvexi 6890 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ V
2928a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∈ (𝐵m 𝐼)) → 0 ∈ V)
30 elsuppfn 8169 . . . . . . . . . . . . . . . . . . . 20 (( Fn 𝐼𝐼𝑉0 ∈ V) → (𝑐 ∈ ( supp 0 ) ↔ (𝑐𝐼 ∧ (𝑐) ≠ 0 )))
3125, 26, 29, 30syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∈ (𝐵m 𝐼)) → (𝑐 ∈ ( supp 0 ) ↔ (𝑐𝐼 ∧ (𝑐) ≠ 0 )))
3231eubidv 2585 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∈ (𝐵m 𝐼)) → (∃!𝑐 𝑐 ∈ ( supp 0 ) ↔ ∃!𝑐(𝑐𝐼 ∧ (𝑐) ≠ 0 )))
33 df-reu 3360 . . . . . . . . . . . . . . . . . 18 (∃!𝑐𝐼 (𝑐) ≠ 0 ↔ ∃!𝑐(𝑐𝐼 ∧ (𝑐) ≠ 0 ))
3432, 33bitr4di 289 . . . . . . . . . . . . . . . . 17 ((𝜑 ∈ (𝐵m 𝐼)) → (∃!𝑐 𝑐 ∈ ( supp 0 ) ↔ ∃!𝑐𝐼 (𝑐) ≠ 0 ))
3524ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) → Fn 𝐼)
36 fvex 6889 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥) ∈ V
3736, 28ifex 4551 . . . . . . . . . . . . . . . . . . . . . 22 if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), (𝑥), 0 ) ∈ V
38 eqid 2735 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐼 ↦ if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), (𝑥), 0 )) = (𝑥𝐼 ↦ if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), (𝑥), 0 ))
3937, 38fnmpti 6681 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐼 ↦ if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), (𝑥), 0 )) Fn 𝐼
4039a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) → (𝑥𝐼 ↦ if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), (𝑥), 0 )) Fn 𝐼)
41 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑣 → (𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ) ↔ 𝑣 = (𝑐𝐼 (𝑐) ≠ 0 )))
42 fveq2 6876 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑣 → (𝑥) = (𝑣))
4341, 42ifbieq1d 4525 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑣 → if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), (𝑥), 0 ) = if(𝑣 = (𝑐𝐼 (𝑐) ≠ 0 ), (𝑣), 0 ))
4443, 38, 37fvmpt3i 6991 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣𝐼 → ((𝑥𝐼 ↦ if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), (𝑥), 0 ))‘𝑣) = if(𝑣 = (𝑐𝐼 (𝑐) ≠ 0 ), (𝑣), 0 ))
4544adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) ∧ 𝑣𝐼) → ((𝑥𝐼 ↦ if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), (𝑥), 0 ))‘𝑣) = if(𝑣 = (𝑐𝐼 (𝑐) ≠ 0 ), (𝑣), 0 ))
46 eqidd 2736 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) ∧ 𝑣𝐼) ∧ 𝑣 = (𝑐𝐼 (𝑐) ≠ 0 )) → (𝑣) = (𝑣))
47 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) ∧ 𝑣𝐼) → 𝑣𝐼)
48 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) ∧ 𝑣𝐼) → ∃!𝑐𝐼 (𝑐) ≠ 0 )
49 fveq2 6876 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = 𝑣 → (𝑐) = (𝑣))
5049neeq1d 2991 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 = 𝑣 → ((𝑐) ≠ 0 ↔ (𝑣) ≠ 0 ))
5150riota2 7387 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣𝐼 ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) → ((𝑣) ≠ 0 ↔ (𝑐𝐼 (𝑐) ≠ 0 ) = 𝑣))
5247, 48, 51syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) ∧ 𝑣𝐼) → ((𝑣) ≠ 0 ↔ (𝑐𝐼 (𝑐) ≠ 0 ) = 𝑣))
53 necom 2985 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( 0 ≠ (𝑣) ↔ (𝑣) ≠ 0 )
54 eqcom 2742 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = (𝑐𝐼 (𝑐) ≠ 0 ) ↔ (𝑐𝐼 (𝑐) ≠ 0 ) = 𝑣)
5552, 53, 543bitr4g 314 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) ∧ 𝑣𝐼) → ( 0 ≠ (𝑣) ↔ 𝑣 = (𝑐𝐼 (𝑐) ≠ 0 )))
5655biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) ∧ 𝑣𝐼) → ( 0 ≠ (𝑣) → 𝑣 = (𝑐𝐼 (𝑐) ≠ 0 )))
5756necon1bd 2950 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) ∧ 𝑣𝐼) → (¬ 𝑣 = (𝑐𝐼 (𝑐) ≠ 0 ) → 0 = (𝑣)))
5857imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) ∧ 𝑣𝐼) ∧ ¬ 𝑣 = (𝑐𝐼 (𝑐) ≠ 0 )) → 0 = (𝑣))
5946, 58ifeqda 4537 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) ∧ 𝑣𝐼) → if(𝑣 = (𝑐𝐼 (𝑐) ≠ 0 ), (𝑣), 0 ) = (𝑣))
6045, 59eqtr2d 2771 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) ∧ 𝑣𝐼) → (𝑣) = ((𝑥𝐼 ↦ if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), (𝑥), 0 ))‘𝑣))
6135, 40, 60eqfnfvd 7024 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) → = (𝑥𝐼 ↦ if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), (𝑥), 0 )))
62 riotacl 7379 . . . . . . . . . . . . . . . . . . . . 21 (∃!𝑐𝐼 (𝑐) ≠ 0 → (𝑐𝐼 (𝑐) ≠ 0 ) ∈ 𝐼)
6362adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) → (𝑐𝐼 (𝑐) ≠ 0 ) ∈ 𝐼)
64 elmapi 8863 . . . . . . . . . . . . . . . . . . . . . 22 ( ∈ (𝐵m 𝐼) → :𝐼𝐵)
6564ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) → :𝐼𝐵)
6665, 63ffvelcdmd 7075 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) → (‘(𝑐𝐼 (𝑐) ≠ 0 )) ∈ 𝐵)
67 fsuppind.1 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎𝐼𝑏𝐵)) → (𝑥𝐼 ↦ if(𝑥 = 𝑎, 𝑏, 0 )) ∈ 𝐻)
6867ralrimivva 3187 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑎𝐼𝑏𝐵 (𝑥𝐼 ↦ if(𝑥 = 𝑎, 𝑏, 0 )) ∈ 𝐻)
6968ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) → ∀𝑎𝐼𝑏𝐵 (𝑥𝐼 ↦ if(𝑥 = 𝑎, 𝑏, 0 )) ∈ 𝐻)
70 eqeq2 2747 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = (𝑐𝐼 (𝑐) ≠ 0 ) → (𝑥 = 𝑎𝑥 = (𝑐𝐼 (𝑐) ≠ 0 )))
7170ifbid 4524 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (𝑐𝐼 (𝑐) ≠ 0 ) → if(𝑥 = 𝑎, 𝑏, 0 ) = if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), 𝑏, 0 ))
7271mpteq2dv 5215 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (𝑐𝐼 (𝑐) ≠ 0 ) → (𝑥𝐼 ↦ if(𝑥 = 𝑎, 𝑏, 0 )) = (𝑥𝐼 ↦ if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), 𝑏, 0 )))
7372eleq1d 2819 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (𝑐𝐼 (𝑐) ≠ 0 ) → ((𝑥𝐼 ↦ if(𝑥 = 𝑎, 𝑏, 0 )) ∈ 𝐻 ↔ (𝑥𝐼 ↦ if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), 𝑏, 0 )) ∈ 𝐻))
74 fveq2 6876 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ) → (𝑥) = (‘(𝑐𝐼 (𝑐) ≠ 0 )))
7574eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ) → (𝑏 = (𝑥) ↔ 𝑏 = (‘(𝑐𝐼 (𝑐) ≠ 0 ))))
7675biimparc 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏 = (‘(𝑐𝐼 (𝑐) ≠ 0 )) ∧ 𝑥 = (𝑐𝐼 (𝑐) ≠ 0 )) → 𝑏 = (𝑥))
7776ifeq1da 4532 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (‘(𝑐𝐼 (𝑐) ≠ 0 )) → if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), 𝑏, 0 ) = if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), (𝑥), 0 ))
7877mpteq2dv 5215 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (‘(𝑐𝐼 (𝑐) ≠ 0 )) → (𝑥𝐼 ↦ if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), 𝑏, 0 )) = (𝑥𝐼 ↦ if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), (𝑥), 0 )))
7978eleq1d 2819 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (‘(𝑐𝐼 (𝑐) ≠ 0 )) → ((𝑥𝐼 ↦ if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), 𝑏, 0 )) ∈ 𝐻 ↔ (𝑥𝐼 ↦ if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), (𝑥), 0 )) ∈ 𝐻))
8073, 79rspc2va 3613 . . . . . . . . . . . . . . . . . . . 20 ((((𝑐𝐼 (𝑐) ≠ 0 ) ∈ 𝐼 ∧ (‘(𝑐𝐼 (𝑐) ≠ 0 )) ∈ 𝐵) ∧ ∀𝑎𝐼𝑏𝐵 (𝑥𝐼 ↦ if(𝑥 = 𝑎, 𝑏, 0 )) ∈ 𝐻) → (𝑥𝐼 ↦ if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), (𝑥), 0 )) ∈ 𝐻)
8163, 66, 69, 80syl21anc 837 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) → (𝑥𝐼 ↦ if(𝑥 = (𝑐𝐼 (𝑐) ≠ 0 ), (𝑥), 0 )) ∈ 𝐻)
8261, 81eqeltrd 2834 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∈ (𝐵m 𝐼)) ∧ ∃!𝑐𝐼 (𝑐) ≠ 0 ) → 𝐻)
8382ex 412 . . . . . . . . . . . . . . . . 17 ((𝜑 ∈ (𝐵m 𝐼)) → (∃!𝑐𝐼 (𝑐) ≠ 0𝐻))
8434, 83sylbid 240 . . . . . . . . . . . . . . . 16 ((𝜑 ∈ (𝐵m 𝐼)) → (∃!𝑐 𝑐 ∈ ( supp 0 ) → 𝐻))
8523, 84biimtrid 242 . . . . . . . . . . . . . . 15 ((𝜑 ∈ (𝐵m 𝐼)) → (1 = (♯‘( supp 0 )) → 𝐻))
8685ralrimiva 3132 . . . . . . . . . . . . . 14 (𝜑 → ∀ ∈ (𝐵m 𝐼)(1 = (♯‘( supp 0 )) → 𝐻))
87 fvoveq1 7428 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = (𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) → (♯‘(𝑚 supp 0 )) = (♯‘((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) supp 0 )))
8887eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = (𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) → (𝑗 = (♯‘(𝑚 supp 0 )) ↔ 𝑗 = (♯‘((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) supp 0 ))))
89 oveq1 7412 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = (𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) → (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))) = ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) ∘f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))))
9089eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = (𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) → (𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))) ↔ 𝑙 = ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) ∘f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )))))
9188, 90anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = (𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) → ((𝑗 = (♯‘(𝑚 supp 0 )) ∧ 𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )))) ↔ (𝑗 = (♯‘((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) supp 0 )) ∧ 𝑙 = ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) ∘f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))))))
92 fsuppind.g . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐺 ∈ Grp)
931, 27grpidcl 18948 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐺 ∈ Grp → 0𝐵)
9492, 93syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑0𝐵)
9594ad5antr 734 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) ∧ 𝑥𝐼) → 0𝐵)
96 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐵m 𝐼) = (𝐵m 𝐼)
97 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) → 𝑙 ∈ (𝐵m 𝐼))
9897ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) ∧ 𝑥𝐼) → 𝑙 ∈ (𝐵m 𝐼))
99 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) ∧ 𝑥𝐼) → 𝑥𝐼)
10096, 98, 99mapfvd 8893 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) ∧ 𝑥𝐼) → (𝑙𝑥) ∈ 𝐵)
10195, 100ifcld 4547 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) ∧ 𝑥𝐼) → if(𝑥 = 𝑧, 0 , (𝑙𝑥)) ∈ 𝐵)
102101fmpttd 7105 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → (𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))):𝐼𝐵)
1032a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → 𝐵 ∈ V)
1044ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → 𝐼𝑉)
105103, 104elmapd 8854 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) ∈ (𝐵m 𝐼) ↔ (𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))):𝐼𝐵))
106102, 105mpbird 257 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → (𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) ∈ (𝐵m 𝐼))
107106adantrl 716 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → (𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) ∈ (𝐵m 𝐼))
108 ovexd 7440 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → (𝑙 supp 0 ) ∈ V)
109 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → 𝑧𝐼)
110 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → (𝑙𝑧) ≠ 0 )
111 elmapfn 8879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑙 ∈ (𝐵m 𝐼) → 𝑙 Fn 𝐼)
112111ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) → 𝑙 Fn 𝐼)
113112adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → 𝑙 Fn 𝐼)
1144ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → 𝐼𝑉)
11528a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → 0 ∈ V)
116 elsuppfn 8169 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑙 Fn 𝐼𝐼𝑉0 ∈ V) → (𝑧 ∈ (𝑙 supp 0 ) ↔ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )))
117113, 114, 115, 116syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → (𝑧 ∈ (𝑙 supp 0 ) ↔ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )))
118109, 110, 117mpbir2and 713 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → 𝑧 ∈ (𝑙 supp 0 ))
119 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → 𝑗 ∈ ℕ)
120119nnnn0d 12562 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → 𝑗 ∈ ℕ0)
121 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → (𝑗 + 1) = (♯‘(𝑙 supp 0 )))
122121eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → (♯‘(𝑙 supp 0 )) = (𝑗 + 1))
123 hashdifsnp1 14524 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑙 supp 0 ) ∈ V ∧ 𝑧 ∈ (𝑙 supp 0 ) ∧ 𝑗 ∈ ℕ0) → ((♯‘(𝑙 supp 0 )) = (𝑗 + 1) → (♯‘((𝑙 supp 0 ) ∖ {𝑧})) = 𝑗))
124123imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑙 supp 0 ) ∈ V ∧ 𝑧 ∈ (𝑙 supp 0 ) ∧ 𝑗 ∈ ℕ0) ∧ (♯‘(𝑙 supp 0 )) = (𝑗 + 1)) → (♯‘((𝑙 supp 0 ) ∖ {𝑧})) = 𝑗)
125108, 118, 120, 122, 124syl31anc 1375 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → (♯‘((𝑙 supp 0 ) ∖ {𝑧})) = 𝑗)
126 eldifsn 4762 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑣 ∈ ((𝑙 supp 0 ) ∖ {𝑧}) ↔ (𝑣 ∈ (𝑙 supp 0 ) ∧ 𝑣𝑧))
127 fvex 6889 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑙𝑥) ∈ V
12828, 127ifex 4551 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 if(𝑥 = 𝑧, 0 , (𝑙𝑥)) ∈ V
129 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) = (𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥)))
130128, 129fnmpti 6681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) Fn 𝐼
131130a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → (𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) Fn 𝐼)
1324ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → 𝐼𝑉)
13328a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → 0 ∈ V)
134 elsuppfn 8169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) Fn 𝐼𝐼𝑉0 ∈ V) → (𝑣 ∈ ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) supp 0 ) ↔ (𝑣𝐼 ∧ ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥)))‘𝑣) ≠ 0 )))
135131, 132, 133, 134syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → (𝑣 ∈ ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) supp 0 ) ↔ (𝑣𝐼 ∧ ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥)))‘𝑣) ≠ 0 )))
136 iftrue 4506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑣 = 𝑧 → if(𝑣 = 𝑧, 0 , (𝑙𝑣)) = 0 )
137 olc 868 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑣 = 𝑧 → ((𝑙𝑣) = 0𝑣 = 𝑧))
138136, 1372thd 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑣 = 𝑧 → (if(𝑣 = 𝑧, 0 , (𝑙𝑣)) = 0 ↔ ((𝑙𝑣) = 0𝑣 = 𝑧)))
139 iffalse 4509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 𝑣 = 𝑧 → if(𝑣 = 𝑧, 0 , (𝑙𝑣)) = (𝑙𝑣))
140139eqeq1d 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 𝑣 = 𝑧 → (if(𝑣 = 𝑧, 0 , (𝑙𝑣)) = 0 ↔ (𝑙𝑣) = 0 ))
141 biorf 936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 𝑣 = 𝑧 → ((𝑙𝑣) = 0 ↔ (𝑣 = 𝑧 ∨ (𝑙𝑣) = 0 )))
142 orcom 870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑙𝑣) = 0𝑣 = 𝑧) ↔ (𝑣 = 𝑧 ∨ (𝑙𝑣) = 0 ))
143141, 142bitr4di 289 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 𝑣 = 𝑧 → ((𝑙𝑣) = 0 ↔ ((𝑙𝑣) = 0𝑣 = 𝑧)))
144140, 143bitrd 279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑣 = 𝑧 → (if(𝑣 = 𝑧, 0 , (𝑙𝑣)) = 0 ↔ ((𝑙𝑣) = 0𝑣 = 𝑧)))
145138, 144pm2.61i 182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (if(𝑣 = 𝑧, 0 , (𝑙𝑣)) = 0 ↔ ((𝑙𝑣) = 0𝑣 = 𝑧))
146145a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → (if(𝑣 = 𝑧, 0 , (𝑙𝑣)) = 0 ↔ ((𝑙𝑣) = 0𝑣 = 𝑧)))
147146necon3abid 2968 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → (if(𝑣 = 𝑧, 0 , (𝑙𝑣)) ≠ 0 ↔ ¬ ((𝑙𝑣) = 0𝑣 = 𝑧)))
148 neanior 3025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑙𝑣) ≠ 0𝑣𝑧) ↔ ¬ ((𝑙𝑣) = 0𝑣 = 𝑧))
149147, 148bitr4di 289 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → (if(𝑣 = 𝑧, 0 , (𝑙𝑣)) ≠ 0 ↔ ((𝑙𝑣) ≠ 0𝑣𝑧)))
150149anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → ((𝑣𝐼 ∧ if(𝑣 = 𝑧, 0 , (𝑙𝑣)) ≠ 0 ) ↔ (𝑣𝐼 ∧ ((𝑙𝑣) ≠ 0𝑣𝑧))))
151 anass 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑣𝐼 ∧ (𝑙𝑣) ≠ 0 ) ∧ 𝑣𝑧) ↔ (𝑣𝐼 ∧ ((𝑙𝑣) ≠ 0𝑣𝑧)))
152150, 151bitr4di 289 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → ((𝑣𝐼 ∧ if(𝑣 = 𝑧, 0 , (𝑙𝑣)) ≠ 0 ) ↔ ((𝑣𝐼 ∧ (𝑙𝑣) ≠ 0 ) ∧ 𝑣𝑧)))
153 equequ1 2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 = 𝑣 → (𝑥 = 𝑧𝑣 = 𝑧))
154 fveq2 6876 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 = 𝑣 → (𝑙𝑥) = (𝑙𝑣))
155153, 154ifbieq2d 4527 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 = 𝑣 → if(𝑥 = 𝑧, 0 , (𝑙𝑥)) = if(𝑣 = 𝑧, 0 , (𝑙𝑣)))
156155, 129, 128fvmpt3i 6991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑣𝐼 → ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥)))‘𝑣) = if(𝑣 = 𝑧, 0 , (𝑙𝑣)))
157156adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) ∧ 𝑣𝐼) → ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥)))‘𝑣) = if(𝑣 = 𝑧, 0 , (𝑙𝑣)))
158157neeq1d 2991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) ∧ 𝑣𝐼) → (((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥)))‘𝑣) ≠ 0 ↔ if(𝑣 = 𝑧, 0 , (𝑙𝑣)) ≠ 0 ))
159158pm5.32da 579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → ((𝑣𝐼 ∧ ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥)))‘𝑣) ≠ 0 ) ↔ (𝑣𝐼 ∧ if(𝑣 = 𝑧, 0 , (𝑙𝑣)) ≠ 0 )))
160112adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → 𝑙 Fn 𝐼)
161 elsuppfn 8169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑙 Fn 𝐼𝐼𝑉0 ∈ V) → (𝑣 ∈ (𝑙 supp 0 ) ↔ (𝑣𝐼 ∧ (𝑙𝑣) ≠ 0 )))
162160, 132, 133, 161syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → (𝑣 ∈ (𝑙 supp 0 ) ↔ (𝑣𝐼 ∧ (𝑙𝑣) ≠ 0 )))
163162anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → ((𝑣 ∈ (𝑙 supp 0 ) ∧ 𝑣𝑧) ↔ ((𝑣𝐼 ∧ (𝑙𝑣) ≠ 0 ) ∧ 𝑣𝑧)))
164152, 159, 1633bitr4d 311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → ((𝑣𝐼 ∧ ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥)))‘𝑣) ≠ 0 ) ↔ (𝑣 ∈ (𝑙 supp 0 ) ∧ 𝑣𝑧)))
165135, 164bitr2d 280 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → ((𝑣 ∈ (𝑙 supp 0 ) ∧ 𝑣𝑧) ↔ 𝑣 ∈ ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) supp 0 )))
166126, 165bitrid 283 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → (𝑣 ∈ ((𝑙 supp 0 ) ∖ {𝑧}) ↔ 𝑣 ∈ ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) supp 0 )))
167166eqrdv 2733 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → ((𝑙 supp 0 ) ∖ {𝑧}) = ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) supp 0 ))
168167fveq2d 6880 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → (♯‘((𝑙 supp 0 ) ∖ {𝑧})) = (♯‘((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) supp 0 )))
169168adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → (♯‘((𝑙 supp 0 ) ∖ {𝑧})) = (♯‘((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) supp 0 )))
170125, 169eqtr3d 2772 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → 𝑗 = (♯‘((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) supp 0 )))
171127, 28ifex 4551 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 if(𝑥 = 𝑧, (𝑙𝑥), 0 ) ∈ V
172 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )) = (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))
173171, 172fnmpti 6681 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )) Fn 𝐼
174173a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )) Fn 𝐼)
175 inidm 4202 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐼𝐼) = 𝐼
176131, 174, 132, 132, 175offn 7684 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) ∘f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))) Fn 𝐼)
177153, 154ifbieq1d 4525 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = 𝑣 → if(𝑥 = 𝑧, (𝑙𝑥), 0 ) = if(𝑣 = 𝑧, (𝑙𝑣), 0 ))
178177, 172, 171fvmpt3i 6991 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑣𝐼 → ((𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))‘𝑣) = if(𝑣 = 𝑧, (𝑙𝑣), 0 ))
179178adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) ∧ 𝑣𝐼) → ((𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))‘𝑣) = if(𝑣 = 𝑧, (𝑙𝑣), 0 ))
180131, 174, 132, 132, 175, 157, 179ofval 7682 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) ∧ 𝑣𝐼) → (((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) ∘f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )))‘𝑣) = (if(𝑣 = 𝑧, 0 , (𝑙𝑣)) + if(𝑣 = 𝑧, (𝑙𝑣), 0 )))
18192ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) ∧ 𝑣𝐼) → 𝐺 ∈ Grp)
182 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ ((𝑙𝑧) ≠ 0𝑣𝐼)) → 𝑙 ∈ (𝐵m 𝐼))
183182anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) ∧ 𝑣𝐼) → 𝑙 ∈ (𝐵m 𝐼))
184 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) ∧ 𝑣𝐼) → 𝑣𝐼)
18596, 183, 184mapfvd 8893 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) ∧ 𝑣𝐼) → (𝑙𝑣) ∈ 𝐵)
186 fsuppind.p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 + = (+g𝐺)
1871, 186, 27grplid 18950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐺 ∈ Grp ∧ (𝑙𝑣) ∈ 𝐵) → ( 0 + (𝑙𝑣)) = (𝑙𝑣))
1881, 186, 27grprid 18951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐺 ∈ Grp ∧ (𝑙𝑣) ∈ 𝐵) → ((𝑙𝑣) + 0 ) = (𝑙𝑣))
189187, 188ifeq12d 4522 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐺 ∈ Grp ∧ (𝑙𝑣) ∈ 𝐵) → if(𝑣 = 𝑧, ( 0 + (𝑙𝑣)), ((𝑙𝑣) + 0 )) = if(𝑣 = 𝑧, (𝑙𝑣), (𝑙𝑣)))
190181, 185, 189syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) ∧ 𝑣𝐼) → if(𝑣 = 𝑧, ( 0 + (𝑙𝑣)), ((𝑙𝑣) + 0 )) = if(𝑣 = 𝑧, (𝑙𝑣), (𝑙𝑣)))
191 ovif12 7507 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (if(𝑣 = 𝑧, 0 , (𝑙𝑣)) + if(𝑣 = 𝑧, (𝑙𝑣), 0 )) = if(𝑣 = 𝑧, ( 0 + (𝑙𝑣)), ((𝑙𝑣) + 0 ))
192 ifid 4541 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 if(𝑣 = 𝑧, (𝑙𝑣), (𝑙𝑣)) = (𝑙𝑣)
193192eqcomi 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑙𝑣) = if(𝑣 = 𝑧, (𝑙𝑣), (𝑙𝑣))
194190, 191, 1933eqtr4g 2795 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) ∧ 𝑣𝐼) → (if(𝑣 = 𝑧, 0 , (𝑙𝑣)) + if(𝑣 = 𝑧, (𝑙𝑣), 0 )) = (𝑙𝑣))
195180, 194eqtr2d 2771 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) ∧ 𝑣𝐼) → (𝑙𝑣) = (((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) ∘f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )))‘𝑣))
196160, 176, 195eqfnfvd 7024 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑙𝑧) ≠ 0 ) → 𝑙 = ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) ∘f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))))
197196adantrl 716 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → 𝑙 = ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) ∘f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))))
198170, 197jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → (𝑗 = (♯‘((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) supp 0 )) ∧ 𝑙 = ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) ∘f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )))))
199198adantllr 719 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → (𝑗 = (♯‘((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) supp 0 )) ∧ 𝑙 = ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 0 , (𝑙𝑥))) ∘f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )))))
20091, 107, 199rspcedvdw 3604 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑧𝐼 ∧ (𝑙𝑧) ≠ 0 )) → ∃𝑚 ∈ (𝐵m 𝐼)(𝑗 = (♯‘(𝑚 supp 0 )) ∧ 𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )))))
201111ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) → 𝑙 Fn 𝐼)
2024ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) → 𝐼𝑉)
20328a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) → 0 ∈ V)
204 suppvalfn 8167 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑙 Fn 𝐼𝐼𝑉0 ∈ V) → (𝑙 supp 0 ) = {𝑧𝐼 ∣ (𝑙𝑧) ≠ 0 })
205201, 202, 203, 204syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) → (𝑙 supp 0 ) = {𝑧𝐼 ∣ (𝑙𝑧) ≠ 0 })
206 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) → (𝑗 + 1) = (♯‘(𝑙 supp 0 )))
207 peano2nn 12252 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
208207ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) → (𝑗 + 1) ∈ ℕ)
209208nnne0d 12290 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) → (𝑗 + 1) ≠ 0)
210206, 209eqnetrrd 3000 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) → (♯‘(𝑙 supp 0 )) ≠ 0)
211 ovex 7438 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 supp 0 ) ∈ V
212 hasheq0 14381 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑙 supp 0 ) ∈ V → ((♯‘(𝑙 supp 0 )) = 0 ↔ (𝑙 supp 0 ) = ∅))
213212necon3bid 2976 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑙 supp 0 ) ∈ V → ((♯‘(𝑙 supp 0 )) ≠ 0 ↔ (𝑙 supp 0 ) ≠ ∅))
214211, 213mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) → ((♯‘(𝑙 supp 0 )) ≠ 0 ↔ (𝑙 supp 0 ) ≠ ∅))
215210, 214mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) → (𝑙 supp 0 ) ≠ ∅)
216205, 215eqnetrrd 3000 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) → {𝑧𝐼 ∣ (𝑙𝑧) ≠ 0 } ≠ ∅)
217 rabn0 4364 . . . . . . . . . . . . . . . . . . . . 21 ({𝑧𝐼 ∣ (𝑙𝑧) ≠ 0 } ≠ ∅ ↔ ∃𝑧𝐼 (𝑙𝑧) ≠ 0 )
218216, 217sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) → ∃𝑧𝐼 (𝑙𝑧) ≠ 0 )
219200, 218reximddv 3156 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) → ∃𝑧𝐼𝑚 ∈ (𝐵m 𝐼)(𝑗 = (♯‘(𝑚 supp 0 )) ∧ 𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )))))
220 rexcom 3271 . . . . . . . . . . . . . . . . . . 19 (∃𝑧𝐼𝑚 ∈ (𝐵m 𝐼)(𝑗 = (♯‘(𝑚 supp 0 )) ∧ 𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )))) ↔ ∃𝑚 ∈ (𝐵m 𝐼)∃𝑧𝐼 (𝑗 = (♯‘(𝑚 supp 0 )) ∧ 𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )))))
221219, 220sylib 218 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) → ∃𝑚 ∈ (𝐵m 𝐼)∃𝑧𝐼 (𝑗 = (♯‘(𝑚 supp 0 )) ∧ 𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )))))
222 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑚 ∈ (𝐵m 𝐼) ∧ 𝑧𝐼)) ∧ (𝑗 = (♯‘(𝑚 supp 0 )) ∧ 𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))))) → 𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))))
223 fvoveq1 7428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ( = 𝑚 → (♯‘( supp 0 )) = (♯‘(𝑚 supp 0 )))
224223eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑚 → (𝑗 = (♯‘( supp 0 )) ↔ 𝑗 = (♯‘(𝑚 supp 0 ))))
225 eleq1w 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑚 → (𝐻𝑚𝐻))
226224, 225imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ( = 𝑚 → ((𝑗 = (♯‘( supp 0 )) → 𝐻) ↔ (𝑗 = (♯‘(𝑚 supp 0 )) → 𝑚𝐻)))
227226rspccva 3600 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻) ∧ 𝑚 ∈ (𝐵m 𝐼)) → (𝑗 = (♯‘(𝑚 supp 0 )) → 𝑚𝐻))
228227adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ 𝑚 ∈ (𝐵m 𝐼)) → (𝑗 = (♯‘(𝑚 supp 0 )) → 𝑚𝐻))
229228imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ 𝑚 ∈ (𝐵m 𝐼)) ∧ 𝑗 = (♯‘(𝑚 supp 0 ))) → 𝑚𝐻)
230229adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ 𝑚 ∈ (𝐵m 𝐼)) ∧ 𝑗 = (♯‘(𝑚 supp 0 ))) → 𝑚𝐻)
231230adantlrr 721 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑚 ∈ (𝐵m 𝐼) ∧ 𝑧𝐼)) ∧ 𝑗 = (♯‘(𝑚 supp 0 ))) → 𝑚𝐻)
232231adantrr 717 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑚 ∈ (𝐵m 𝐼) ∧ 𝑧𝐼)) ∧ (𝑗 = (♯‘(𝑚 supp 0 )) ∧ 𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))))) → 𝑚𝐻)
233 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑚 ∈ (𝐵m 𝐼) ∧ 𝑧𝐼)) ∧ (𝑗 = (♯‘(𝑚 supp 0 )) ∧ 𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))))) → 𝑧𝐼)
23497ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑚 ∈ (𝐵m 𝐼) ∧ 𝑧𝐼)) ∧ (𝑗 = (♯‘(𝑚 supp 0 )) ∧ 𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))))) → 𝑙 ∈ (𝐵m 𝐼))
23596, 234, 233mapfvd 8893 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑚 ∈ (𝐵m 𝐼) ∧ 𝑧𝐼)) ∧ (𝑗 = (♯‘(𝑚 supp 0 )) ∧ 𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))))) → (𝑙𝑧) ∈ 𝐵)
23668ad5antr 734 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑚 ∈ (𝐵m 𝐼) ∧ 𝑧𝐼)) ∧ (𝑗 = (♯‘(𝑚 supp 0 )) ∧ 𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))))) → ∀𝑎𝐼𝑏𝐵 (𝑥𝐼 ↦ if(𝑥 = 𝑎, 𝑏, 0 )) ∈ 𝐻)
237 equequ2 2025 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = 𝑧 → (𝑥 = 𝑎𝑥 = 𝑧))
238237ifbid 4524 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑧 → if(𝑥 = 𝑎, 𝑏, 0 ) = if(𝑥 = 𝑧, 𝑏, 0 ))
239238mpteq2dv 5215 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑧 → (𝑥𝐼 ↦ if(𝑥 = 𝑎, 𝑏, 0 )) = (𝑥𝐼 ↦ if(𝑥 = 𝑧, 𝑏, 0 )))
240239eleq1d 2819 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑧 → ((𝑥𝐼 ↦ if(𝑥 = 𝑎, 𝑏, 0 )) ∈ 𝐻 ↔ (𝑥𝐼 ↦ if(𝑥 = 𝑧, 𝑏, 0 )) ∈ 𝐻))
241 fveq2 6876 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = 𝑧 → (𝑙𝑥) = (𝑙𝑧))
242241eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝑧 → (𝑏 = (𝑙𝑥) ↔ 𝑏 = (𝑙𝑧)))
243242biimparc 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏 = (𝑙𝑧) ∧ 𝑥 = 𝑧) → 𝑏 = (𝑙𝑥))
244243ifeq1da 4532 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = (𝑙𝑧) → if(𝑥 = 𝑧, 𝑏, 0 ) = if(𝑥 = 𝑧, (𝑙𝑥), 0 ))
245244mpteq2dv 5215 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = (𝑙𝑧) → (𝑥𝐼 ↦ if(𝑥 = 𝑧, 𝑏, 0 )) = (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )))
246245eleq1d 2819 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = (𝑙𝑧) → ((𝑥𝐼 ↦ if(𝑥 = 𝑧, 𝑏, 0 )) ∈ 𝐻 ↔ (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )) ∈ 𝐻))
247240, 246rspc2va 3613 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑧𝐼 ∧ (𝑙𝑧) ∈ 𝐵) ∧ ∀𝑎𝐼𝑏𝐵 (𝑥𝐼 ↦ if(𝑥 = 𝑎, 𝑏, 0 )) ∈ 𝐻) → (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )) ∈ 𝐻)
248233, 235, 236, 247syl21anc 837 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑚 ∈ (𝐵m 𝐼) ∧ 𝑧𝐼)) ∧ (𝑗 = (♯‘(𝑚 supp 0 )) ∧ 𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))))) → (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )) ∈ 𝐻)
249 fsuppind.2 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥f + 𝑦) ∈ 𝐻)
250249ralrimivva 3187 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑥𝐻𝑦𝐻 (𝑥f + 𝑦) ∈ 𝐻)
251250ad5antr 734 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑚 ∈ (𝐵m 𝐼) ∧ 𝑧𝐼)) ∧ (𝑗 = (♯‘(𝑚 supp 0 )) ∧ 𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))))) → ∀𝑥𝐻𝑦𝐻 (𝑥f + 𝑦) ∈ 𝐻)
252 ovrspc2v 7431 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑚𝐻 ∧ (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )) ∈ 𝐻) ∧ ∀𝑥𝐻𝑦𝐻 (𝑥f + 𝑦) ∈ 𝐻) → (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))) ∈ 𝐻)
253232, 248, 251, 252syl21anc 837 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑚 ∈ (𝐵m 𝐼) ∧ 𝑧𝐼)) ∧ (𝑗 = (♯‘(𝑚 supp 0 )) ∧ 𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))))) → (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))) ∈ 𝐻)
254222, 253eqeltrd 2834 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑚 ∈ (𝐵m 𝐼) ∧ 𝑧𝐼)) ∧ (𝑗 = (♯‘(𝑚 supp 0 )) ∧ 𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 ))))) → 𝑙𝐻)
255254ex 412 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) ∧ (𝑚 ∈ (𝐵m 𝐼) ∧ 𝑧𝐼)) → ((𝑗 = (♯‘(𝑚 supp 0 )) ∧ 𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )))) → 𝑙𝐻))
256255rexlimdvva 3198 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) → (∃𝑚 ∈ (𝐵m 𝐼)∃𝑧𝐼 (𝑗 = (♯‘(𝑚 supp 0 )) ∧ 𝑙 = (𝑚f + (𝑥𝐼 ↦ if(𝑥 = 𝑧, (𝑙𝑥), 0 )))) → 𝑙𝐻))
257221, 256mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) ∧ (𝑙 ∈ (𝐵m 𝐼) ∧ (𝑗 + 1) = (♯‘(𝑙 supp 0 )))) → 𝑙𝐻)
258257exp32 420 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) → (𝑙 ∈ (𝐵m 𝐼) → ((𝑗 + 1) = (♯‘(𝑙 supp 0 )) → 𝑙𝐻)))
259258ralrimiv 3131 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) → ∀𝑙 ∈ (𝐵m 𝐼)((𝑗 + 1) = (♯‘(𝑙 supp 0 )) → 𝑙𝐻))
260 fvoveq1 7428 . . . . . . . . . . . . . . . . . 18 (𝑙 = → (♯‘(𝑙 supp 0 )) = (♯‘( supp 0 )))
261260eqeq2d 2746 . . . . . . . . . . . . . . . . 17 (𝑙 = → ((𝑗 + 1) = (♯‘(𝑙 supp 0 )) ↔ (𝑗 + 1) = (♯‘( supp 0 ))))
262 eleq1w 2817 . . . . . . . . . . . . . . . . 17 (𝑙 = → (𝑙𝐻𝐻))
263261, 262imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑙 = → (((𝑗 + 1) = (♯‘(𝑙 supp 0 )) → 𝑙𝐻) ↔ ((𝑗 + 1) = (♯‘( supp 0 )) → 𝐻)))
264263cbvralvw 3220 . . . . . . . . . . . . . . 15 (∀𝑙 ∈ (𝐵m 𝐼)((𝑗 + 1) = (♯‘(𝑙 supp 0 )) → 𝑙𝐻) ↔ ∀ ∈ (𝐵m 𝐼)((𝑗 + 1) = (♯‘( supp 0 )) → 𝐻))
265259, 264sylib 218 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ ∀ ∈ (𝐵m 𝐼)(𝑗 = (♯‘( supp 0 )) → 𝐻)) → ∀ ∈ (𝐵m 𝐼)((𝑗 + 1) = (♯‘( supp 0 )) → 𝐻))
2669, 12, 15, 18, 86, 265nnindd 12260 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ∀ ∈ (𝐵m 𝐼)(𝑛 = (♯‘( supp 0 )) → 𝐻))
267266ralrimiva 3132 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ ℕ ∀ ∈ (𝐵m 𝐼)(𝑛 = (♯‘( supp 0 )) → 𝐻))
268 ralcom 3270 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ ∀ ∈ (𝐵m 𝐼)(𝑛 = (♯‘( supp 0 )) → 𝐻) ↔ ∀ ∈ (𝐵m 𝐼)∀𝑛 ∈ ℕ (𝑛 = (♯‘( supp 0 )) → 𝐻))
269267, 268sylib 218 . . . . . . . . . . 11 (𝜑 → ∀ ∈ (𝐵m 𝐼)∀𝑛 ∈ ℕ (𝑛 = (♯‘( supp 0 )) → 𝐻))
270 biidd 262 . . . . . . . . . . . . . 14 (𝑛 = (♯‘( supp 0 )) → (𝐻𝐻))
271270ceqsralv 3501 . . . . . . . . . . . . 13 ((♯‘( supp 0 )) ∈ ℕ → (∀𝑛 ∈ ℕ (𝑛 = (♯‘( supp 0 )) → 𝐻) ↔ 𝐻))
272271biimpcd 249 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ (𝑛 = (♯‘( supp 0 )) → 𝐻) → ((♯‘( supp 0 )) ∈ ℕ → 𝐻))
273272ralimi 3073 . . . . . . . . . . 11 (∀ ∈ (𝐵m 𝐼)∀𝑛 ∈ ℕ (𝑛 = (♯‘( supp 0 )) → 𝐻) → ∀ ∈ (𝐵m 𝐼)((♯‘( supp 0 )) ∈ ℕ → 𝐻))
274269, 273syl 17 . . . . . . . . . 10 (𝜑 → ∀ ∈ (𝐵m 𝐼)((♯‘( supp 0 )) ∈ ℕ → 𝐻))
275 fvoveq1 7428 . . . . . . . . . . . . 13 ( = 𝑋 → (♯‘( supp 0 )) = (♯‘(𝑋 supp 0 )))
276275eleq1d 2819 . . . . . . . . . . . 12 ( = 𝑋 → ((♯‘( supp 0 )) ∈ ℕ ↔ (♯‘(𝑋 supp 0 )) ∈ ℕ))
277 eleq1 2822 . . . . . . . . . . . 12 ( = 𝑋 → (𝐻𝑋𝐻))
278276, 277imbi12d 344 . . . . . . . . . . 11 ( = 𝑋 → (((♯‘( supp 0 )) ∈ ℕ → 𝐻) ↔ ((♯‘(𝑋 supp 0 )) ∈ ℕ → 𝑋𝐻)))
279278rspcv 3597 . . . . . . . . . 10 (𝑋 ∈ (𝐵m 𝐼) → (∀ ∈ (𝐵m 𝐼)((♯‘( supp 0 )) ∈ ℕ → 𝐻) → ((♯‘(𝑋 supp 0 )) ∈ ℕ → 𝑋𝐻)))
280274, 279syl5com 31 . . . . . . . . 9 (𝜑 → (𝑋 ∈ (𝐵m 𝐼) → ((♯‘(𝑋 supp 0 )) ∈ ℕ → 𝑋𝐻)))
281280com23 86 . . . . . . . 8 (𝜑 → ((♯‘(𝑋 supp 0 )) ∈ ℕ → (𝑋 ∈ (𝐵m 𝐼) → 𝑋𝐻)))
282281imp 406 . . . . . . 7 ((𝜑 ∧ (♯‘(𝑋 supp 0 )) ∈ ℕ) → (𝑋 ∈ (𝐵m 𝐼) → 𝑋𝐻))
2836, 282sylbird 260 . . . . . 6 ((𝜑 ∧ (♯‘(𝑋 supp 0 )) ∈ ℕ) → (𝑋:𝐼𝐵𝑋𝐻))
284283imp 406 . . . . 5 (((𝜑 ∧ (♯‘(𝑋 supp 0 )) ∈ ℕ) ∧ 𝑋:𝐼𝐵) → 𝑋𝐻)
285284an32s 652 . . . 4 (((𝜑𝑋:𝐼𝐵) ∧ (♯‘(𝑋 supp 0 )) ∈ ℕ) → 𝑋𝐻)
286285adantlr 715 . . 3 ((((𝜑𝑋:𝐼𝐵) ∧ 𝑋 finSupp 0 ) ∧ (♯‘(𝑋 supp 0 )) ∈ ℕ) → 𝑋𝐻)
287 ovex 7438 . . . . 5 (𝑋 supp 0 ) ∈ V
288 hasheq0 14381 . . . . 5 ((𝑋 supp 0 ) ∈ V → ((♯‘(𝑋 supp 0 )) = 0 ↔ (𝑋 supp 0 ) = ∅))
289287, 288ax-mp 5 . . . 4 ((♯‘(𝑋 supp 0 )) = 0 ↔ (𝑋 supp 0 ) = ∅)
290 ffn 6706 . . . . . . . 8 (𝑋:𝐼𝐵𝑋 Fn 𝐼)
291290ad2antlr 727 . . . . . . 7 (((𝜑𝑋:𝐼𝐵) ∧ 𝑋 finSupp 0 ) → 𝑋 Fn 𝐼)
2924ad2antrr 726 . . . . . . 7 (((𝜑𝑋:𝐼𝐵) ∧ 𝑋 finSupp 0 ) → 𝐼𝑉)
29328a1i 11 . . . . . . 7 (((𝜑𝑋:𝐼𝐵) ∧ 𝑋 finSupp 0 ) → 0 ∈ V)
294 fnsuppeq0 8191 . . . . . . 7 ((𝑋 Fn 𝐼𝐼𝑉0 ∈ V) → ((𝑋 supp 0 ) = ∅ ↔ 𝑋 = (𝐼 × { 0 })))
295291, 292, 293, 294syl3anc 1373 . . . . . 6 (((𝜑𝑋:𝐼𝐵) ∧ 𝑋 finSupp 0 ) → ((𝑋 supp 0 ) = ∅ ↔ 𝑋 = (𝐼 × { 0 })))
296295biimpa 476 . . . . 5 ((((𝜑𝑋:𝐼𝐵) ∧ 𝑋 finSupp 0 ) ∧ (𝑋 supp 0 ) = ∅) → 𝑋 = (𝐼 × { 0 }))
297 fsuppind.0 . . . . . 6 (𝜑 → (𝐼 × { 0 }) ∈ 𝐻)
298297ad3antrrr 730 . . . . 5 ((((𝜑𝑋:𝐼𝐵) ∧ 𝑋 finSupp 0 ) ∧ (𝑋 supp 0 ) = ∅) → (𝐼 × { 0 }) ∈ 𝐻)
299296, 298eqeltrd 2834 . . . 4 ((((𝜑𝑋:𝐼𝐵) ∧ 𝑋 finSupp 0 ) ∧ (𝑋 supp 0 ) = ∅) → 𝑋𝐻)
300289, 299sylan2b 594 . . 3 ((((𝜑𝑋:𝐼𝐵) ∧ 𝑋 finSupp 0 ) ∧ (♯‘(𝑋 supp 0 )) = 0) → 𝑋𝐻)
301 simpr 484 . . . . . 6 (((𝜑𝑋:𝐼𝐵) ∧ 𝑋 finSupp 0 ) → 𝑋 finSupp 0 )
302301fsuppimpd 9381 . . . . 5 (((𝜑𝑋:𝐼𝐵) ∧ 𝑋 finSupp 0 ) → (𝑋 supp 0 ) ∈ Fin)
303 hashcl 14374 . . . . 5 ((𝑋 supp 0 ) ∈ Fin → (♯‘(𝑋 supp 0 )) ∈ ℕ0)
304302, 303syl 17 . . . 4 (((𝜑𝑋:𝐼𝐵) ∧ 𝑋 finSupp 0 ) → (♯‘(𝑋 supp 0 )) ∈ ℕ0)
305 elnn0 12503 . . . 4 ((♯‘(𝑋 supp 0 )) ∈ ℕ0 ↔ ((♯‘(𝑋 supp 0 )) ∈ ℕ ∨ (♯‘(𝑋 supp 0 )) = 0))
306304, 305sylib 218 . . 3 (((𝜑𝑋:𝐼𝐵) ∧ 𝑋 finSupp 0 ) → ((♯‘(𝑋 supp 0 )) ∈ ℕ ∨ (♯‘(𝑋 supp 0 )) = 0))
307286, 300, 306mpjaodan 960 . 2 (((𝜑𝑋:𝐼𝐵) ∧ 𝑋 finSupp 0 ) → 𝑋𝐻)
308307anasss 466 1 ((𝜑 ∧ (𝑋:𝐼𝐵𝑋 finSupp 0 )) → 𝑋𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  ∃!weu 2567  wne 2932  wral 3051  wrex 3060  ∃!wreu 3357  {crab 3415  Vcvv 3459  cdif 3923  c0 4308  ifcif 4500  {csn 4601   class class class wbr 5119  cmpt 5201   × cxp 5652   Fn wfn 6526  wf 6527  cfv 6531  crio 7361  (class class class)co 7405  f cof 7669   supp csupp 8159  m cmap 8840  Fincfn 8959   finSupp cfsupp 9373  0cc0 11129  1c1 11130   + caddc 11132  cn 12240  0cn0 12501  chash 14348  Basecbs 17228  +gcplusg 17271  0gc0g 17453  Grpcgrp 18916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919
This theorem is referenced by:  fsuppssind  42616
  Copyright terms: Public domain W3C validator