MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txkgen Structured version   Visualization version   GIF version

Theorem txkgen 23539
Description: The topological product of a locally compact space and a compactly generated Hausdorff space is compactly generated. (The condition on 𝑆 can also be replaced with either "compactly generated weak Hausdorff (CGWH)" or "compact Hausdorff-ly generated (CHG)", where WH means that all images of compact Hausdorff spaces are closed and CHG means that a set is open iff it is open in all compact Hausdorff spaces.) (Contributed by Mario Carneiro, 23-Mar-2015.)
Assertion
Ref Expression
txkgen ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑅 ×t 𝑆) ∈ ran 𝑘Gen)

Proof of Theorem txkgen
Dummy variables 𝑎 𝑏 𝑘 𝑠 𝑡 𝑢 𝑥 𝑦 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 23360 . . 3 (𝑅 ∈ 𝑛-Locally Comp → 𝑅 ∈ Top)
2 elinel1 4164 . . . 4 (𝑆 ∈ (ran 𝑘Gen ∩ Haus) → 𝑆 ∈ ran 𝑘Gen)
3 kgentop 23429 . . . 4 (𝑆 ∈ ran 𝑘Gen → 𝑆 ∈ Top)
42, 3syl 17 . . 3 (𝑆 ∈ (ran 𝑘Gen ∩ Haus) → 𝑆 ∈ Top)
5 txtop 23456 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
61, 4, 5syl2an 596 . 2 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑅 ×t 𝑆) ∈ Top)
7 simplll 774 . . . . . . . 8 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑅 ∈ 𝑛-Locally Comp)
8 eqid 2729 . . . . . . . . . 10 (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) = (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩)
98mptpreima 6211 . . . . . . . . 9 ((𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) “ 𝑥) = {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}
101ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑅 ∈ Top)
11 toptopon2 22805 . . . . . . . . . . . . . 14 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘ 𝑅))
1210, 11sylib 218 . . . . . . . . . . . . 13 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑅 ∈ (TopOn‘ 𝑅))
13 idcn 23144 . . . . . . . . . . . . 13 (𝑅 ∈ (TopOn‘ 𝑅) → ( I ↾ 𝑅) ∈ (𝑅 Cn 𝑅))
1412, 13syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ( I ↾ 𝑅) ∈ (𝑅 Cn 𝑅))
15 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑆 ∈ (ran 𝑘Gen ∩ Haus))
1615, 4syl 17 . . . . . . . . . . . . . 14 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑆 ∈ Top)
17 toptopon2 22805 . . . . . . . . . . . . . 14 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘ 𝑆))
1816, 17sylib 218 . . . . . . . . . . . . 13 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑆 ∈ (TopOn‘ 𝑆))
19 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑦𝑥)
20 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆)))
21 elunii 4876 . . . . . . . . . . . . . . . 16 ((𝑦𝑥𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → 𝑦 (𝑘Gen‘(𝑅 ×t 𝑆)))
2219, 20, 21syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑦 (𝑘Gen‘(𝑅 ×t 𝑆)))
23 eqid 2729 . . . . . . . . . . . . . . . . . 18 𝑅 = 𝑅
24 eqid 2729 . . . . . . . . . . . . . . . . . 18 𝑆 = 𝑆
2523, 24txuni 23479 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
2610, 16, 25syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
2710, 16, 5syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑅 ×t 𝑆) ∈ Top)
28 eqid 2729 . . . . . . . . . . . . . . . . . 18 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
2928kgenuni 23426 . . . . . . . . . . . . . . . . 17 ((𝑅 ×t 𝑆) ∈ Top → (𝑅 ×t 𝑆) = (𝑘Gen‘(𝑅 ×t 𝑆)))
3027, 29syl 17 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑅 ×t 𝑆) = (𝑘Gen‘(𝑅 ×t 𝑆)))
3126, 30eqtrd 2764 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ( 𝑅 × 𝑆) = (𝑘Gen‘(𝑅 ×t 𝑆)))
3222, 31eleqtrrd 2831 . . . . . . . . . . . . . 14 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑦 ∈ ( 𝑅 × 𝑆))
33 xp2nd 8001 . . . . . . . . . . . . . 14 (𝑦 ∈ ( 𝑅 × 𝑆) → (2nd𝑦) ∈ 𝑆)
3432, 33syl 17 . . . . . . . . . . . . 13 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (2nd𝑦) ∈ 𝑆)
35 cnconst2 23170 . . . . . . . . . . . . 13 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆) ∧ (2nd𝑦) ∈ 𝑆) → ( 𝑅 × {(2nd𝑦)}) ∈ (𝑅 Cn 𝑆))
3612, 18, 34, 35syl3anc 1373 . . . . . . . . . . . 12 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ( 𝑅 × {(2nd𝑦)}) ∈ (𝑅 Cn 𝑆))
37 fvresi 7147 . . . . . . . . . . . . . . . 16 (𝑡 𝑅 → (( I ↾ 𝑅)‘𝑡) = 𝑡)
38 fvex 6871 . . . . . . . . . . . . . . . . 17 (2nd𝑦) ∈ V
3938fvconst2 7178 . . . . . . . . . . . . . . . 16 (𝑡 𝑅 → (( 𝑅 × {(2nd𝑦)})‘𝑡) = (2nd𝑦))
4037, 39opeq12d 4845 . . . . . . . . . . . . . . 15 (𝑡 𝑅 → ⟨(( I ↾ 𝑅)‘𝑡), (( 𝑅 × {(2nd𝑦)})‘𝑡)⟩ = ⟨𝑡, (2nd𝑦)⟩)
4140mpteq2ia 5202 . . . . . . . . . . . . . 14 (𝑡 𝑅 ↦ ⟨(( I ↾ 𝑅)‘𝑡), (( 𝑅 × {(2nd𝑦)})‘𝑡)⟩) = (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩)
4241eqcomi 2738 . . . . . . . . . . . . 13 (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) = (𝑡 𝑅 ↦ ⟨(( I ↾ 𝑅)‘𝑡), (( 𝑅 × {(2nd𝑦)})‘𝑡)⟩)
4323, 42txcnmpt 23511 . . . . . . . . . . . 12 ((( I ↾ 𝑅) ∈ (𝑅 Cn 𝑅) ∧ ( 𝑅 × {(2nd𝑦)}) ∈ (𝑅 Cn 𝑆)) → (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) ∈ (𝑅 Cn (𝑅 ×t 𝑆)))
4414, 36, 43syl2anc 584 . . . . . . . . . . 11 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) ∈ (𝑅 Cn (𝑅 ×t 𝑆)))
45 llycmpkgen 23439 . . . . . . . . . . . . 13 (𝑅 ∈ 𝑛-Locally Comp → 𝑅 ∈ ran 𝑘Gen)
4645ad3antrrr 730 . . . . . . . . . . . 12 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑅 ∈ ran 𝑘Gen)
476ad2antrr 726 . . . . . . . . . . . 12 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑅 ×t 𝑆) ∈ Top)
48 kgencn3 23445 . . . . . . . . . . . 12 ((𝑅 ∈ ran 𝑘Gen ∧ (𝑅 ×t 𝑆) ∈ Top) → (𝑅 Cn (𝑅 ×t 𝑆)) = (𝑅 Cn (𝑘Gen‘(𝑅 ×t 𝑆))))
4946, 47, 48syl2anc 584 . . . . . . . . . . 11 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑅 Cn (𝑅 ×t 𝑆)) = (𝑅 Cn (𝑘Gen‘(𝑅 ×t 𝑆))))
5044, 49eleqtrd 2830 . . . . . . . . . 10 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) ∈ (𝑅 Cn (𝑘Gen‘(𝑅 ×t 𝑆))))
51 cnima 23152 . . . . . . . . . 10 (((𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) ∈ (𝑅 Cn (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → ((𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) “ 𝑥) ∈ 𝑅)
5250, 20, 51syl2anc 584 . . . . . . . . 9 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ((𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) “ 𝑥) ∈ 𝑅)
539, 52eqeltrrid 2833 . . . . . . . 8 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∈ 𝑅)
54 opeq1 4837 . . . . . . . . . 10 (𝑡 = (1st𝑦) → ⟨𝑡, (2nd𝑦)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
5554eleq1d 2813 . . . . . . . . 9 (𝑡 = (1st𝑦) → (⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥 ↔ ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑥))
56 xp1st 8000 . . . . . . . . . 10 (𝑦 ∈ ( 𝑅 × 𝑆) → (1st𝑦) ∈ 𝑅)
5732, 56syl 17 . . . . . . . . 9 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (1st𝑦) ∈ 𝑅)
58 1st2nd2 8007 . . . . . . . . . . 11 (𝑦 ∈ ( 𝑅 × 𝑆) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
5932, 58syl 17 . . . . . . . . . 10 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
6059, 19eqeltrrd 2829 . . . . . . . . 9 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑥)
6155, 57, 60elrabd 3661 . . . . . . . 8 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (1st𝑦) ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥})
62 nlly2i 23363 . . . . . . . 8 ((𝑅 ∈ 𝑛-Locally Comp ∧ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∈ 𝑅 ∧ (1st𝑦) ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}) → ∃𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}∃𝑢𝑅 ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))
637, 53, 61, 62syl3anc 1373 . . . . . . 7 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ∃𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}∃𝑢𝑅 ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))
6410adantr 480 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑅 ∈ Top)
6516adantr 480 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑆 ∈ Top)
66 simprlr 779 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑢𝑅)
67 ssrab2 4043 . . . . . . . . . . . . . 14 {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ⊆ 𝑆
6867a1i 11 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ⊆ 𝑆)
69 incom 4172 . . . . . . . . . . . . . . . 16 ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) = (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})
70 simprll 778 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥})
7170elpwid 4572 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑠 ⊆ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥})
72 ssrab2 4043 . . . . . . . . . . . . . . . . . . . . . 22 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ⊆ 𝑅
7371, 72sstrdi 3959 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑠 𝑅)
7473adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑠 𝑅)
75 elpwi 4570 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ 𝒫 𝑆𝑘 𝑆)
7675ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑘 𝑆)
77 eldif 3924 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥) ↔ (𝑡 ∈ (𝑠 × 𝑘) ∧ ¬ 𝑡𝑥))
7877anbi1i 624 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥) ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ ((𝑡 ∈ (𝑠 × 𝑘) ∧ ¬ 𝑡𝑥) ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏))
79 anass 468 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑡 ∈ (𝑠 × 𝑘) ∧ ¬ 𝑡𝑥) ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ (𝑡 ∈ (𝑠 × 𝑘) ∧ (¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏)))
8078, 79bitri 275 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥) ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ (𝑡 ∈ (𝑠 × 𝑘) ∧ (¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏)))
8180rexbii2 3072 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ↔ ∃𝑡 ∈ (𝑠 × 𝑘)(¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏))
82 ancom 460 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ (((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ∧ ¬ 𝑡𝑥))
83 fveqeq2 6867 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = ⟨𝑎, 𝑢⟩ → (((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ↔ ((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏))
84 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = ⟨𝑎, 𝑢⟩ → (𝑡𝑥 ↔ ⟨𝑎, 𝑢⟩ ∈ 𝑥))
8584notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = ⟨𝑎, 𝑢⟩ → (¬ 𝑡𝑥 ↔ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥))
8683, 85anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = ⟨𝑎, 𝑢⟩ → ((((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ∧ ¬ 𝑡𝑥) ↔ (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥)))
8782, 86bitrid 283 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = ⟨𝑎, 𝑢⟩ → ((¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥)))
8887rexxp 5806 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑡 ∈ (𝑠 × 𝑘)(¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ ∃𝑎𝑠𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥))
8981, 88bitri 275 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ↔ ∃𝑎𝑠𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥))
90 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑠 𝑅𝑘 𝑆) → 𝑠 𝑅)
9190sselda 3946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) → 𝑎 𝑅)
9291adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → 𝑎 𝑅)
93 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) → 𝑘 𝑆)
9493sselda 3946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → 𝑢 𝑆)
9592, 94opelxpd 5677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → ⟨𝑎, 𝑢⟩ ∈ ( 𝑅 × 𝑆))
9695fvresd 6878 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → ((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = (2nd ‘⟨𝑎, 𝑢⟩))
97 vex 3451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑎 ∈ V
98 vex 3451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑢 ∈ V
9997, 98op2nd 7977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (2nd ‘⟨𝑎, 𝑢⟩) = 𝑢
10096, 99eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → ((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑢)
101100eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏𝑢 = 𝑏))
102101anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → ((((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ (𝑢 = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥)))
103102rexbidva 3155 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) → (∃𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ ∃𝑢𝑘 (𝑢 = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥)))
104 opeq2 4838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑢 = 𝑏 → ⟨𝑎, 𝑢⟩ = ⟨𝑎, 𝑏⟩)
105104eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑢 = 𝑏 → (⟨𝑎, 𝑢⟩ ∈ 𝑥 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
106105notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑢 = 𝑏 → (¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥 ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
107106ceqsrexbv 3622 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃𝑢𝑘 (𝑢 = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ (𝑏𝑘 ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
108103, 107bitrdi 287 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) → (∃𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ (𝑏𝑘 ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
109108rexbidva 3155 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 𝑅𝑘 𝑆) → (∃𝑎𝑠𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ ∃𝑎𝑠 (𝑏𝑘 ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
110 r19.42v 3169 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑎𝑠 (𝑏𝑘 ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥) ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
111109, 110bitrdi 287 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 𝑅𝑘 𝑆) → (∃𝑎𝑠𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
11289, 111bitrid 283 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 𝑅𝑘 𝑆) → (∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
113 f2ndres 7993 . . . . . . . . . . . . . . . . . . . . . . . 24 (2nd ↾ ( 𝑅 × 𝑆)):( 𝑅 × 𝑆)⟶ 𝑆
114 ffn 6688 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2nd ↾ ( 𝑅 × 𝑆)):( 𝑅 × 𝑆)⟶ 𝑆 → (2nd ↾ ( 𝑅 × 𝑆)) Fn ( 𝑅 × 𝑆))
115113, 114ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (2nd ↾ ( 𝑅 × 𝑆)) Fn ( 𝑅 × 𝑆)
116 difss 4099 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 × 𝑘) ∖ 𝑥) ⊆ (𝑠 × 𝑘)
117 xpss12 5653 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 𝑅𝑘 𝑆) → (𝑠 × 𝑘) ⊆ ( 𝑅 × 𝑆))
118116, 117sstrid 3958 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 𝑅𝑘 𝑆) → ((𝑠 × 𝑘) ∖ 𝑥) ⊆ ( 𝑅 × 𝑆))
119 fvelimab 6933 . . . . . . . . . . . . . . . . . . . . . . 23 (((2nd ↾ ( 𝑅 × 𝑆)) Fn ( 𝑅 × 𝑆) ∧ ((𝑠 × 𝑘) ∖ 𝑥) ⊆ ( 𝑅 × 𝑆)) → (𝑏 ∈ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ↔ ∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏))
120115, 118, 119sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 𝑅𝑘 𝑆) → (𝑏 ∈ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ↔ ∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏))
121 eldif 3924 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ↔ (𝑏𝑘 ∧ ¬ 𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
122 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 𝑅𝑘 𝑆) → 𝑘 𝑆)
123122sselda 3946 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑏𝑘) → 𝑏 𝑆)
124 sneq 4599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑣 = 𝑏 → {𝑣} = {𝑏})
125124xpeq2d 5668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑣 = 𝑏 → (𝑠 × {𝑣}) = (𝑠 × {𝑏}))
126125sseq1d 3978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑣 = 𝑏 → ((𝑠 × {𝑣}) ⊆ 𝑥 ↔ (𝑠 × {𝑏}) ⊆ 𝑥))
127 dfss3 3935 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑠 × {𝑏}) ⊆ 𝑥 ↔ ∀𝑘 ∈ (𝑠 × {𝑏})𝑘𝑥)
128 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = ⟨𝑎, 𝑡⟩ → (𝑘𝑥 ↔ ⟨𝑎, 𝑡⟩ ∈ 𝑥))
129128ralxp 5805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑘 ∈ (𝑠 × {𝑏})𝑘𝑥 ↔ ∀𝑎𝑠𝑡 ∈ {𝑏}⟨𝑎, 𝑡⟩ ∈ 𝑥)
130 vex 3451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑏 ∈ V
131 opeq2 4838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑡 = 𝑏 → ⟨𝑎, 𝑡⟩ = ⟨𝑎, 𝑏⟩)
132131eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 = 𝑏 → (⟨𝑎, 𝑡⟩ ∈ 𝑥 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
133130, 132ralsn 4645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∀𝑡 ∈ {𝑏}⟨𝑎, 𝑡⟩ ∈ 𝑥 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝑥)
134133ralbii 3075 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑎𝑠𝑡 ∈ {𝑏}⟨𝑎, 𝑡⟩ ∈ 𝑥 ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥)
135127, 129, 1343bitri 297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑠 × {𝑏}) ⊆ 𝑥 ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥)
136126, 135bitrdi 287 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑣 = 𝑏 → ((𝑠 × {𝑣}) ⊆ 𝑥 ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥))
137136elrab3 3660 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 𝑆 → (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥))
138123, 137syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑏𝑘) → (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥))
139138notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑏𝑘) → (¬ 𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ ¬ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥))
140 rexnal 3082 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥 ↔ ¬ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥)
141139, 140bitr4di 289 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑏𝑘) → (¬ 𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
142141pm5.32da 579 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 𝑅𝑘 𝑆) → ((𝑏𝑘 ∧ ¬ 𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
143121, 142bitrid 283 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 𝑅𝑘 𝑆) → (𝑏 ∈ (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
144112, 120, 1433bitr4d 311 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 𝑅𝑘 𝑆) → (𝑏 ∈ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ↔ 𝑏 ∈ (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
145144eqrdv 2727 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 𝑅𝑘 𝑆) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) = (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
14674, 76, 145syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) = (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
147 difin 4235 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) = (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})
14865adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ Top)
14924restuni 23049 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 ∈ Top ∧ 𝑘 𝑆) → 𝑘 = (𝑆t 𝑘))
150148, 76, 149syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑘 = (𝑆t 𝑘))
151150difeq1d 4088 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑘 ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) = ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
152147, 151eqtr3id 2778 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) = ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
153146, 152eqtrd 2764 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) = ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
15415ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ (ran 𝑘Gen ∩ Haus))
155154elin2d 4168 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ Haus)
156 df-ima 5651 . . . . . . . . . . . . . . . . . . . . . . 23 ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) = ran ((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥))
157 resres 5963 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥)) = (2nd ↾ (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥)))
158 inss2 4201 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ ((𝑠 × 𝑘) ∖ 𝑥)
159158, 116sstri 3956 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ (𝑠 × 𝑘)
160 ssres2 5975 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ (𝑠 × 𝑘) → (2nd ↾ (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥))) ⊆ (2nd ↾ (𝑠 × 𝑘)))
161159, 160ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2nd ↾ (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥))) ⊆ (2nd ↾ (𝑠 × 𝑘))
162157, 161eqsstri 3993 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ (2nd ↾ (𝑠 × 𝑘))
163162rnssi 5904 . . . . . . . . . . . . . . . . . . . . . . 23 ran ((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ ran (2nd ↾ (𝑠 × 𝑘))
164156, 163eqsstri 3993 . . . . . . . . . . . . . . . . . . . . . 22 ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ ran (2nd ↾ (𝑠 × 𝑘))
165 f2ndres 7993 . . . . . . . . . . . . . . . . . . . . . . 23 (2nd ↾ (𝑠 × 𝑘)):(𝑠 × 𝑘)⟶𝑘
166 frn 6695 . . . . . . . . . . . . . . . . . . . . . . 23 ((2nd ↾ (𝑠 × 𝑘)):(𝑠 × 𝑘)⟶𝑘 → ran (2nd ↾ (𝑠 × 𝑘)) ⊆ 𝑘)
167165, 166ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ran (2nd ↾ (𝑠 × 𝑘)) ⊆ 𝑘
168164, 167sstri 3956 . . . . . . . . . . . . . . . . . . . . 21 ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑘
169168, 76sstrid 3958 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑆)
17012ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑅 ∈ (TopOn‘ 𝑅))
171148, 17sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ (TopOn‘ 𝑆))
172 tx2cn 23497 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
173170, 171, 172syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
17427ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑅 ×t 𝑆) ∈ Top)
175116a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∖ 𝑥) ⊆ (𝑠 × 𝑘))
176 vex 3451 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑠 ∈ V
177 vex 3451 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑘 ∈ V
178176, 177xpex 7729 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 × 𝑘) ∈ V
179178a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑠 × 𝑘) ∈ V)
180 restabs 23052 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ×t 𝑆) ∈ Top ∧ ((𝑠 × 𝑘) ∖ 𝑥) ⊆ (𝑠 × 𝑘) ∧ (𝑠 × 𝑘) ∈ V) → (((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) = ((𝑅 ×t 𝑆) ↾t ((𝑠 × 𝑘) ∖ 𝑥)))
181174, 175, 179, 180syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) = ((𝑅 ×t 𝑆) ↾t ((𝑠 × 𝑘) ∖ 𝑥)))
18264adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑅 ∈ Top)
183154, 4syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ Top)
184176a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑠 ∈ V)
185 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑘 ∈ 𝒫 𝑆)
186 txrest 23518 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑠 ∈ V ∧ 𝑘 ∈ 𝒫 𝑆)) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) = ((𝑅t 𝑠) ×t (𝑆t 𝑘)))
187182, 183, 184, 185, 186syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) = ((𝑅t 𝑠) ×t (𝑆t 𝑘)))
188 simprr3 1224 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑅t 𝑠) ∈ Comp)
189188adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑅t 𝑠) ∈ Comp)
190 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑆t 𝑘) ∈ Comp)
191 txcmp 23530 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑅t 𝑠) ∈ Comp ∧ (𝑆t 𝑘) ∈ Comp) → ((𝑅t 𝑠) ×t (𝑆t 𝑘)) ∈ Comp)
192189, 190, 191syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅t 𝑠) ×t (𝑆t 𝑘)) ∈ Comp)
193187, 192eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Comp)
194 difin 4235 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑠 × 𝑘) ∖ ((𝑠 × 𝑘) ∩ 𝑥)) = ((𝑠 × 𝑘) ∖ 𝑥)
19574, 76, 117syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑠 × 𝑘) ⊆ ( 𝑅 × 𝑆))
196182, 148, 25syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
197195, 196sseqtrd 3983 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑠 × 𝑘) ⊆ (𝑅 ×t 𝑆))
19828restuni 23049 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ×t 𝑆) ∈ Top ∧ (𝑠 × 𝑘) ⊆ (𝑅 ×t 𝑆)) → (𝑠 × 𝑘) = ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
199174, 197, 198syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑠 × 𝑘) = ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
200199difeq1d 4088 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∖ ((𝑠 × 𝑘) ∩ 𝑥)) = ( ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∖ ((𝑠 × 𝑘) ∩ 𝑥)))
201194, 200eqtr3id 2778 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∖ 𝑥) = ( ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∖ ((𝑠 × 𝑘) ∩ 𝑥)))
202 resttop 23047 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑅 ×t 𝑆) ∈ Top ∧ (𝑠 × 𝑘) ∈ V) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Top)
203174, 178, 202sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Top)
204 incom 4172 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑠 × 𝑘) ∩ 𝑥) = (𝑥 ∩ (𝑠 × 𝑘))
20520ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆)))
206 kgeni 23424 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆)) ∧ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Comp) → (𝑥 ∩ (𝑠 × 𝑘)) ∈ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
207205, 193, 206syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑥 ∩ (𝑠 × 𝑘)) ∈ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
208204, 207eqeltrid 2832 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∩ 𝑥) ∈ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
209 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) = ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))
210209opncld 22920 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Top ∧ ((𝑠 × 𝑘) ∩ 𝑥) ∈ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))) → ( ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∖ ((𝑠 × 𝑘) ∩ 𝑥)) ∈ (Clsd‘((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))))
211203, 208, 210syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ( ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∖ ((𝑠 × 𝑘) ∩ 𝑥)) ∈ (Clsd‘((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))))
212201, 211eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∖ 𝑥) ∈ (Clsd‘((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))))
213 cmpcld 23289 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Comp ∧ ((𝑠 × 𝑘) ∖ 𝑥) ∈ (Clsd‘((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))) → (((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) ∈ Comp)
214193, 212, 213syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) ∈ Comp)
215181, 214eqeltrrd 2829 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅 ×t 𝑆) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) ∈ Comp)
216 imacmp 23284 . . . . . . . . . . . . . . . . . . . . 21 (((2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆) ∧ ((𝑅 ×t 𝑆) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) ∈ Comp) → (𝑆t ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥))) ∈ Comp)
217173, 215, 216syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑆t ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥))) ∈ Comp)
21824hauscmp 23294 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ∈ Haus ∧ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑆 ∧ (𝑆t ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥))) ∈ Comp) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘𝑆))
219155, 169, 217, 218syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘𝑆))
220168a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑘)
22124restcldi 23060 . . . . . . . . . . . . . . . . . . 19 ((𝑘 𝑆 ∧ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘𝑆) ∧ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑘) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘(𝑆t 𝑘)))
22276, 219, 220, 221syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘(𝑆t 𝑘)))
223153, 222eqeltrrd 2829 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) ∈ (Clsd‘(𝑆t 𝑘)))
224 resttop 23047 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ Top ∧ 𝑘 ∈ 𝒫 𝑆) → (𝑆t 𝑘) ∈ Top)
225148, 185, 224syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑆t 𝑘) ∈ Top)
226 inss1 4200 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑘
227226, 150sseqtrid 3989 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ (𝑆t 𝑘))
228 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑆t 𝑘) = (𝑆t 𝑘)
229228isopn2 22919 . . . . . . . . . . . . . . . . . 18 (((𝑆t 𝑘) ∈ Top ∧ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ (𝑆t 𝑘)) → ((𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑆t 𝑘) ↔ ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) ∈ (Clsd‘(𝑆t 𝑘))))
230225, 227, 229syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑆t 𝑘) ↔ ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) ∈ (Clsd‘(𝑆t 𝑘))))
231223, 230mpbird 257 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑆t 𝑘))
23269, 231eqeltrid 2832 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘))
233232expr 456 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑘 ∈ 𝒫 𝑆) → ((𝑆t 𝑘) ∈ Comp → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘)))
234233ralrimiva 3125 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ∀𝑘 ∈ 𝒫 𝑆((𝑆t 𝑘) ∈ Comp → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘)))
23565, 17sylib 218 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑆 ∈ (TopOn‘ 𝑆))
236 elkgen 23423 . . . . . . . . . . . . . 14 (𝑆 ∈ (TopOn‘ 𝑆) → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ (𝑘Gen‘𝑆) ↔ ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ⊆ 𝑆 ∧ ∀𝑘 ∈ 𝒫 𝑆((𝑆t 𝑘) ∈ Comp → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘)))))
237235, 236syl 17 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ (𝑘Gen‘𝑆) ↔ ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ⊆ 𝑆 ∧ ∀𝑘 ∈ 𝒫 𝑆((𝑆t 𝑘) ∈ Comp → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘)))))
23868, 234, 237mpbir2and 713 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ (𝑘Gen‘𝑆))
23915adantr 480 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑆 ∈ (ran 𝑘Gen ∩ Haus))
240239, 2syl 17 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑆 ∈ ran 𝑘Gen)
241 kgenidm 23434 . . . . . . . . . . . . 13 (𝑆 ∈ ran 𝑘Gen → (𝑘Gen‘𝑆) = 𝑆)
242240, 241syl 17 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑘Gen‘𝑆) = 𝑆)
243238, 242eleqtrd 2830 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ 𝑆)
244 txopn 23489 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑢𝑅 ∧ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ 𝑆)) → (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑅 ×t 𝑆))
24564, 65, 66, 243, 244syl22anc 838 . . . . . . . . . 10 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑅 ×t 𝑆))
24659adantr 480 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
247 simprr1 1222 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (1st𝑦) ∈ 𝑢)
248 sneq 4599 . . . . . . . . . . . . . . 15 (𝑣 = (2nd𝑦) → {𝑣} = {(2nd𝑦)})
249248xpeq2d 5668 . . . . . . . . . . . . . 14 (𝑣 = (2nd𝑦) → (𝑠 × {𝑣}) = (𝑠 × {(2nd𝑦)}))
250249sseq1d 3978 . . . . . . . . . . . . 13 (𝑣 = (2nd𝑦) → ((𝑠 × {𝑣}) ⊆ 𝑥 ↔ (𝑠 × {(2nd𝑦)}) ⊆ 𝑥))
25134adantr 480 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (2nd𝑦) ∈ 𝑆)
252 relxp 5656 . . . . . . . . . . . . . . 15 Rel (𝑠 × {(2nd𝑦)})
253252a1i 11 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → Rel (𝑠 × {(2nd𝑦)}))
254 opelxp 5674 . . . . . . . . . . . . . . 15 (⟨𝑎, 𝑏⟩ ∈ (𝑠 × {(2nd𝑦)}) ↔ (𝑎𝑠𝑏 ∈ {(2nd𝑦)}))
25571sselda 3946 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑠) → 𝑎 ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥})
256 opeq1 4837 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑎 → ⟨𝑡, (2nd𝑦)⟩ = ⟨𝑎, (2nd𝑦)⟩)
257256eleq1d 2813 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑎 → (⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥 ↔ ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥))
258257elrab 3659 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ↔ (𝑎 𝑅 ∧ ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥))
259258simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} → ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥)
260255, 259syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑠) → ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥)
261 elsni 4606 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ {(2nd𝑦)} → 𝑏 = (2nd𝑦))
262261opeq2d 4844 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ {(2nd𝑦)} → ⟨𝑎, 𝑏⟩ = ⟨𝑎, (2nd𝑦)⟩)
263262eleq1d 2813 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ {(2nd𝑦)} → (⟨𝑎, 𝑏⟩ ∈ 𝑥 ↔ ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥))
264260, 263syl5ibrcom 247 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑠) → (𝑏 ∈ {(2nd𝑦)} → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
265264expimpd 453 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ((𝑎𝑠𝑏 ∈ {(2nd𝑦)}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
266254, 265biimtrid 242 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (⟨𝑎, 𝑏⟩ ∈ (𝑠 × {(2nd𝑦)}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
267253, 266relssdv 5751 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑠 × {(2nd𝑦)}) ⊆ 𝑥)
268250, 251, 267elrabd 3661 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (2nd𝑦) ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})
269247, 268opelxpd 5677 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
270246, 269eqeltrd 2828 . . . . . . . . . 10 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑦 ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
271 relxp 5656 . . . . . . . . . . . 12 Rel (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})
272271a1i 11 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → Rel (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
273 opelxp 5674 . . . . . . . . . . . 12 (⟨𝑎, 𝑏⟩ ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ↔ (𝑎𝑢𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
274126elrab 3659 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ (𝑏 𝑆 ∧ (𝑠 × {𝑏}) ⊆ 𝑥))
275274simprbi 496 . . . . . . . . . . . . . 14 (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} → (𝑠 × {𝑏}) ⊆ 𝑥)
276 simprr2 1223 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑢𝑠)
277276sselda 3946 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑢) → 𝑎𝑠)
278 vsnid 4627 . . . . . . . . . . . . . . 15 𝑏 ∈ {𝑏}
279 opelxpi 5675 . . . . . . . . . . . . . . 15 ((𝑎𝑠𝑏 ∈ {𝑏}) → ⟨𝑎, 𝑏⟩ ∈ (𝑠 × {𝑏}))
280277, 278, 279sylancl 586 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑢) → ⟨𝑎, 𝑏⟩ ∈ (𝑠 × {𝑏}))
281 ssel 3940 . . . . . . . . . . . . . 14 ((𝑠 × {𝑏}) ⊆ 𝑥 → (⟨𝑎, 𝑏⟩ ∈ (𝑠 × {𝑏}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
282275, 280, 281syl2imc 41 . . . . . . . . . . . . 13 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑢) → (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
283282expimpd 453 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ((𝑎𝑢𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
284273, 283biimtrid 242 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (⟨𝑎, 𝑏⟩ ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
285272, 284relssdv 5751 . . . . . . . . . 10 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑥)
286 eleq2 2817 . . . . . . . . . . . 12 (𝑡 = (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → (𝑦𝑡𝑦 ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
287 sseq1 3972 . . . . . . . . . . . 12 (𝑡 = (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → (𝑡𝑥 ↔ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑥))
288286, 287anbi12d 632 . . . . . . . . . . 11 (𝑡 = (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → ((𝑦𝑡𝑡𝑥) ↔ (𝑦 ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∧ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑥)))
289288rspcev 3588 . . . . . . . . . 10 (((𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑅 ×t 𝑆) ∧ (𝑦 ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∧ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑥)) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥))
290245, 270, 285, 289syl12anc 836 . . . . . . . . 9 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥))
291290expr 456 . . . . . . . 8 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ (𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅)) → (((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥)))
292291rexlimdvva 3194 . . . . . . 7 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (∃𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}∃𝑢𝑅 ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥)))
29363, 292mpd 15 . . . . . 6 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥))
294293ralrimiva 3125 . . . . 5 (((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → ∀𝑦𝑥𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥))
2956adantr 480 . . . . . 6 (((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → (𝑅 ×t 𝑆) ∈ Top)
296 eltop2 22862 . . . . . 6 ((𝑅 ×t 𝑆) ∈ Top → (𝑥 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦𝑥𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥)))
297295, 296syl 17 . . . . 5 (((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → (𝑥 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦𝑥𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥)))
298294, 297mpbird 257 . . . 4 (((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → 𝑥 ∈ (𝑅 ×t 𝑆))
299298ex 412 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆)) → 𝑥 ∈ (𝑅 ×t 𝑆)))
300299ssrdv 3952 . 2 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑘Gen‘(𝑅 ×t 𝑆)) ⊆ (𝑅 ×t 𝑆))
301 iskgen2 23435 . 2 ((𝑅 ×t 𝑆) ∈ ran 𝑘Gen ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ (𝑘Gen‘(𝑅 ×t 𝑆)) ⊆ (𝑅 ×t 𝑆)))
3026, 300, 301sylanbrc 583 1 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑅 ×t 𝑆) ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  cin 3913  wss 3914  𝒫 cpw 4563  {csn 4589  cop 4595   cuni 4871  cmpt 5188   I cid 5532   × cxp 5636  ccnv 5637  ran crn 5639  cres 5640  cima 5641  Rel wrel 5643   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  t crest 17383  Topctop 22780  TopOnctopon 22797  Clsdccld 22903   Cn ccn 23111  Hauscha 23195  Compccmp 23273  𝑛-Locally cnlly 23352  𝑘Genckgen 23420   ×t ctx 23447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-2o 8435  df-map 8801  df-en 8919  df-dom 8920  df-fin 8922  df-fi 9362  df-rest 17385  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-nlly 23354  df-kgen 23421  df-tx 23449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator