MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txkgen Structured version   Visualization version   GIF version

Theorem txkgen 22711
Description: The topological product of a locally compact space and a compactly generated Hausdorff space is compactly generated. (The condition on 𝑆 can also be replaced with either "compactly generated weak Hausdorff (CGWH)" or "compact Hausdorff-ly generated (CHG)", where WH means that all images of compact Hausdorff spaces are closed and CHG means that a set is open iff it is open in all compact Hausdorff spaces.) (Contributed by Mario Carneiro, 23-Mar-2015.)
Assertion
Ref Expression
txkgen ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑅 ×t 𝑆) ∈ ran 𝑘Gen)

Proof of Theorem txkgen
Dummy variables 𝑎 𝑏 𝑘 𝑠 𝑡 𝑢 𝑥 𝑦 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 22532 . . 3 (𝑅 ∈ 𝑛-Locally Comp → 𝑅 ∈ Top)
2 elinel1 4125 . . . 4 (𝑆 ∈ (ran 𝑘Gen ∩ Haus) → 𝑆 ∈ ran 𝑘Gen)
3 kgentop 22601 . . . 4 (𝑆 ∈ ran 𝑘Gen → 𝑆 ∈ Top)
42, 3syl 17 . . 3 (𝑆 ∈ (ran 𝑘Gen ∩ Haus) → 𝑆 ∈ Top)
5 txtop 22628 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
61, 4, 5syl2an 595 . 2 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑅 ×t 𝑆) ∈ Top)
7 simplll 771 . . . . . . . 8 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑅 ∈ 𝑛-Locally Comp)
8 eqid 2738 . . . . . . . . . 10 (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) = (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩)
98mptpreima 6130 . . . . . . . . 9 ((𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) “ 𝑥) = {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}
101ad3antrrr 726 . . . . . . . . . . . . . 14 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑅 ∈ Top)
11 toptopon2 21975 . . . . . . . . . . . . . 14 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘ 𝑅))
1210, 11sylib 217 . . . . . . . . . . . . 13 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑅 ∈ (TopOn‘ 𝑅))
13 idcn 22316 . . . . . . . . . . . . 13 (𝑅 ∈ (TopOn‘ 𝑅) → ( I ↾ 𝑅) ∈ (𝑅 Cn 𝑅))
1412, 13syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ( I ↾ 𝑅) ∈ (𝑅 Cn 𝑅))
15 simpllr 772 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑆 ∈ (ran 𝑘Gen ∩ Haus))
1615, 4syl 17 . . . . . . . . . . . . . 14 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑆 ∈ Top)
17 toptopon2 21975 . . . . . . . . . . . . . 14 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘ 𝑆))
1816, 17sylib 217 . . . . . . . . . . . . 13 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑆 ∈ (TopOn‘ 𝑆))
19 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑦𝑥)
20 simplr 765 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆)))
21 elunii 4841 . . . . . . . . . . . . . . . 16 ((𝑦𝑥𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → 𝑦 (𝑘Gen‘(𝑅 ×t 𝑆)))
2219, 20, 21syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑦 (𝑘Gen‘(𝑅 ×t 𝑆)))
23 eqid 2738 . . . . . . . . . . . . . . . . . 18 𝑅 = 𝑅
24 eqid 2738 . . . . . . . . . . . . . . . . . 18 𝑆 = 𝑆
2523, 24txuni 22651 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
2610, 16, 25syl2anc 583 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
2710, 16, 5syl2anc 583 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑅 ×t 𝑆) ∈ Top)
28 eqid 2738 . . . . . . . . . . . . . . . . . 18 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
2928kgenuni 22598 . . . . . . . . . . . . . . . . 17 ((𝑅 ×t 𝑆) ∈ Top → (𝑅 ×t 𝑆) = (𝑘Gen‘(𝑅 ×t 𝑆)))
3027, 29syl 17 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑅 ×t 𝑆) = (𝑘Gen‘(𝑅 ×t 𝑆)))
3126, 30eqtrd 2778 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ( 𝑅 × 𝑆) = (𝑘Gen‘(𝑅 ×t 𝑆)))
3222, 31eleqtrrd 2842 . . . . . . . . . . . . . 14 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑦 ∈ ( 𝑅 × 𝑆))
33 xp2nd 7837 . . . . . . . . . . . . . 14 (𝑦 ∈ ( 𝑅 × 𝑆) → (2nd𝑦) ∈ 𝑆)
3432, 33syl 17 . . . . . . . . . . . . 13 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (2nd𝑦) ∈ 𝑆)
35 cnconst2 22342 . . . . . . . . . . . . 13 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆) ∧ (2nd𝑦) ∈ 𝑆) → ( 𝑅 × {(2nd𝑦)}) ∈ (𝑅 Cn 𝑆))
3612, 18, 34, 35syl3anc 1369 . . . . . . . . . . . 12 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ( 𝑅 × {(2nd𝑦)}) ∈ (𝑅 Cn 𝑆))
37 fvresi 7027 . . . . . . . . . . . . . . . 16 (𝑡 𝑅 → (( I ↾ 𝑅)‘𝑡) = 𝑡)
38 fvex 6769 . . . . . . . . . . . . . . . . 17 (2nd𝑦) ∈ V
3938fvconst2 7061 . . . . . . . . . . . . . . . 16 (𝑡 𝑅 → (( 𝑅 × {(2nd𝑦)})‘𝑡) = (2nd𝑦))
4037, 39opeq12d 4809 . . . . . . . . . . . . . . 15 (𝑡 𝑅 → ⟨(( I ↾ 𝑅)‘𝑡), (( 𝑅 × {(2nd𝑦)})‘𝑡)⟩ = ⟨𝑡, (2nd𝑦)⟩)
4140mpteq2ia 5173 . . . . . . . . . . . . . 14 (𝑡 𝑅 ↦ ⟨(( I ↾ 𝑅)‘𝑡), (( 𝑅 × {(2nd𝑦)})‘𝑡)⟩) = (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩)
4241eqcomi 2747 . . . . . . . . . . . . 13 (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) = (𝑡 𝑅 ↦ ⟨(( I ↾ 𝑅)‘𝑡), (( 𝑅 × {(2nd𝑦)})‘𝑡)⟩)
4323, 42txcnmpt 22683 . . . . . . . . . . . 12 ((( I ↾ 𝑅) ∈ (𝑅 Cn 𝑅) ∧ ( 𝑅 × {(2nd𝑦)}) ∈ (𝑅 Cn 𝑆)) → (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) ∈ (𝑅 Cn (𝑅 ×t 𝑆)))
4414, 36, 43syl2anc 583 . . . . . . . . . . 11 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) ∈ (𝑅 Cn (𝑅 ×t 𝑆)))
45 llycmpkgen 22611 . . . . . . . . . . . . 13 (𝑅 ∈ 𝑛-Locally Comp → 𝑅 ∈ ran 𝑘Gen)
4645ad3antrrr 726 . . . . . . . . . . . 12 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑅 ∈ ran 𝑘Gen)
476ad2antrr 722 . . . . . . . . . . . 12 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑅 ×t 𝑆) ∈ Top)
48 kgencn3 22617 . . . . . . . . . . . 12 ((𝑅 ∈ ran 𝑘Gen ∧ (𝑅 ×t 𝑆) ∈ Top) → (𝑅 Cn (𝑅 ×t 𝑆)) = (𝑅 Cn (𝑘Gen‘(𝑅 ×t 𝑆))))
4946, 47, 48syl2anc 583 . . . . . . . . . . 11 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑅 Cn (𝑅 ×t 𝑆)) = (𝑅 Cn (𝑘Gen‘(𝑅 ×t 𝑆))))
5044, 49eleqtrd 2841 . . . . . . . . . 10 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) ∈ (𝑅 Cn (𝑘Gen‘(𝑅 ×t 𝑆))))
51 cnima 22324 . . . . . . . . . 10 (((𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) ∈ (𝑅 Cn (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → ((𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) “ 𝑥) ∈ 𝑅)
5250, 20, 51syl2anc 583 . . . . . . . . 9 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ((𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) “ 𝑥) ∈ 𝑅)
539, 52eqeltrrid 2844 . . . . . . . 8 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∈ 𝑅)
54 opeq1 4801 . . . . . . . . . 10 (𝑡 = (1st𝑦) → ⟨𝑡, (2nd𝑦)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
5554eleq1d 2823 . . . . . . . . 9 (𝑡 = (1st𝑦) → (⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥 ↔ ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑥))
56 xp1st 7836 . . . . . . . . . 10 (𝑦 ∈ ( 𝑅 × 𝑆) → (1st𝑦) ∈ 𝑅)
5732, 56syl 17 . . . . . . . . 9 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (1st𝑦) ∈ 𝑅)
58 1st2nd2 7843 . . . . . . . . . . 11 (𝑦 ∈ ( 𝑅 × 𝑆) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
5932, 58syl 17 . . . . . . . . . 10 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
6059, 19eqeltrrd 2840 . . . . . . . . 9 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑥)
6155, 57, 60elrabd 3619 . . . . . . . 8 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (1st𝑦) ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥})
62 nlly2i 22535 . . . . . . . 8 ((𝑅 ∈ 𝑛-Locally Comp ∧ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∈ 𝑅 ∧ (1st𝑦) ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}) → ∃𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}∃𝑢𝑅 ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))
637, 53, 61, 62syl3anc 1369 . . . . . . 7 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ∃𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}∃𝑢𝑅 ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))
6410adantr 480 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑅 ∈ Top)
6516adantr 480 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑆 ∈ Top)
66 simprlr 776 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑢𝑅)
67 ssrab2 4009 . . . . . . . . . . . . . 14 {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ⊆ 𝑆
6867a1i 11 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ⊆ 𝑆)
69 incom 4131 . . . . . . . . . . . . . . . 16 ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) = (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})
70 simprll 775 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥})
7170elpwid 4541 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑠 ⊆ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥})
72 ssrab2 4009 . . . . . . . . . . . . . . . . . . . . . 22 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ⊆ 𝑅
7371, 72sstrdi 3929 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑠 𝑅)
7473adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑠 𝑅)
75 elpwi 4539 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ 𝒫 𝑆𝑘 𝑆)
7675ad2antrl 724 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑘 𝑆)
77 eldif 3893 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥) ↔ (𝑡 ∈ (𝑠 × 𝑘) ∧ ¬ 𝑡𝑥))
7877anbi1i 623 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥) ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ ((𝑡 ∈ (𝑠 × 𝑘) ∧ ¬ 𝑡𝑥) ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏))
79 anass 468 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑡 ∈ (𝑠 × 𝑘) ∧ ¬ 𝑡𝑥) ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ (𝑡 ∈ (𝑠 × 𝑘) ∧ (¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏)))
8078, 79bitri 274 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥) ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ (𝑡 ∈ (𝑠 × 𝑘) ∧ (¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏)))
8180rexbii2 3175 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ↔ ∃𝑡 ∈ (𝑠 × 𝑘)(¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏))
82 ancom 460 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ (((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ∧ ¬ 𝑡𝑥))
83 fveqeq2 6765 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = ⟨𝑎, 𝑢⟩ → (((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ↔ ((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏))
84 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = ⟨𝑎, 𝑢⟩ → (𝑡𝑥 ↔ ⟨𝑎, 𝑢⟩ ∈ 𝑥))
8584notbid 317 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = ⟨𝑎, 𝑢⟩ → (¬ 𝑡𝑥 ↔ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥))
8683, 85anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = ⟨𝑎, 𝑢⟩ → ((((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ∧ ¬ 𝑡𝑥) ↔ (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥)))
8782, 86syl5bb 282 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = ⟨𝑎, 𝑢⟩ → ((¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥)))
8887rexxp 5740 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑡 ∈ (𝑠 × 𝑘)(¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ ∃𝑎𝑠𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥))
8981, 88bitri 274 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ↔ ∃𝑎𝑠𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥))
90 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑠 𝑅𝑘 𝑆) → 𝑠 𝑅)
9190sselda 3917 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) → 𝑎 𝑅)
9291adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → 𝑎 𝑅)
93 simplr 765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) → 𝑘 𝑆)
9493sselda 3917 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → 𝑢 𝑆)
9592, 94opelxpd 5618 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → ⟨𝑎, 𝑢⟩ ∈ ( 𝑅 × 𝑆))
9695fvresd 6776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → ((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = (2nd ‘⟨𝑎, 𝑢⟩))
97 vex 3426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑎 ∈ V
98 vex 3426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑢 ∈ V
9997, 98op2nd 7813 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (2nd ‘⟨𝑎, 𝑢⟩) = 𝑢
10096, 99eqtrdi 2795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → ((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑢)
101100eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏𝑢 = 𝑏))
102101anbi1d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → ((((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ (𝑢 = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥)))
103102rexbidva 3224 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) → (∃𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ ∃𝑢𝑘 (𝑢 = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥)))
104 opeq2 4802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑢 = 𝑏 → ⟨𝑎, 𝑢⟩ = ⟨𝑎, 𝑏⟩)
105104eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑢 = 𝑏 → (⟨𝑎, 𝑢⟩ ∈ 𝑥 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
106105notbid 317 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑢 = 𝑏 → (¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥 ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
107106ceqsrexbv 3579 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃𝑢𝑘 (𝑢 = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ (𝑏𝑘 ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
108103, 107bitrdi 286 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) → (∃𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ (𝑏𝑘 ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
109108rexbidva 3224 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 𝑅𝑘 𝑆) → (∃𝑎𝑠𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ ∃𝑎𝑠 (𝑏𝑘 ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
110 r19.42v 3276 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑎𝑠 (𝑏𝑘 ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥) ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
111109, 110bitrdi 286 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 𝑅𝑘 𝑆) → (∃𝑎𝑠𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
11289, 111syl5bb 282 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 𝑅𝑘 𝑆) → (∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
113 f2ndres 7829 . . . . . . . . . . . . . . . . . . . . . . . 24 (2nd ↾ ( 𝑅 × 𝑆)):( 𝑅 × 𝑆)⟶ 𝑆
114 ffn 6584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2nd ↾ ( 𝑅 × 𝑆)):( 𝑅 × 𝑆)⟶ 𝑆 → (2nd ↾ ( 𝑅 × 𝑆)) Fn ( 𝑅 × 𝑆))
115113, 114ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (2nd ↾ ( 𝑅 × 𝑆)) Fn ( 𝑅 × 𝑆)
116 difss 4062 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 × 𝑘) ∖ 𝑥) ⊆ (𝑠 × 𝑘)
117 xpss12 5595 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 𝑅𝑘 𝑆) → (𝑠 × 𝑘) ⊆ ( 𝑅 × 𝑆))
118116, 117sstrid 3928 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 𝑅𝑘 𝑆) → ((𝑠 × 𝑘) ∖ 𝑥) ⊆ ( 𝑅 × 𝑆))
119 fvelimab 6823 . . . . . . . . . . . . . . . . . . . . . . 23 (((2nd ↾ ( 𝑅 × 𝑆)) Fn ( 𝑅 × 𝑆) ∧ ((𝑠 × 𝑘) ∖ 𝑥) ⊆ ( 𝑅 × 𝑆)) → (𝑏 ∈ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ↔ ∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏))
120115, 118, 119sylancr 586 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 𝑅𝑘 𝑆) → (𝑏 ∈ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ↔ ∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏))
121 eldif 3893 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ↔ (𝑏𝑘 ∧ ¬ 𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
122 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 𝑅𝑘 𝑆) → 𝑘 𝑆)
123122sselda 3917 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑏𝑘) → 𝑏 𝑆)
124 sneq 4568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑣 = 𝑏 → {𝑣} = {𝑏})
125124xpeq2d 5610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑣 = 𝑏 → (𝑠 × {𝑣}) = (𝑠 × {𝑏}))
126125sseq1d 3948 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑣 = 𝑏 → ((𝑠 × {𝑣}) ⊆ 𝑥 ↔ (𝑠 × {𝑏}) ⊆ 𝑥))
127 dfss3 3905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑠 × {𝑏}) ⊆ 𝑥 ↔ ∀𝑘 ∈ (𝑠 × {𝑏})𝑘𝑥)
128 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = ⟨𝑎, 𝑡⟩ → (𝑘𝑥 ↔ ⟨𝑎, 𝑡⟩ ∈ 𝑥))
129128ralxp 5739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑘 ∈ (𝑠 × {𝑏})𝑘𝑥 ↔ ∀𝑎𝑠𝑡 ∈ {𝑏}⟨𝑎, 𝑡⟩ ∈ 𝑥)
130 vex 3426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑏 ∈ V
131 opeq2 4802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑡 = 𝑏 → ⟨𝑎, 𝑡⟩ = ⟨𝑎, 𝑏⟩)
132131eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 = 𝑏 → (⟨𝑎, 𝑡⟩ ∈ 𝑥 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
133130, 132ralsn 4614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∀𝑡 ∈ {𝑏}⟨𝑎, 𝑡⟩ ∈ 𝑥 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝑥)
134133ralbii 3090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑎𝑠𝑡 ∈ {𝑏}⟨𝑎, 𝑡⟩ ∈ 𝑥 ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥)
135127, 129, 1343bitri 296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑠 × {𝑏}) ⊆ 𝑥 ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥)
136126, 135bitrdi 286 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑣 = 𝑏 → ((𝑠 × {𝑣}) ⊆ 𝑥 ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥))
137136elrab3 3618 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 𝑆 → (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥))
138123, 137syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑏𝑘) → (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥))
139138notbid 317 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑏𝑘) → (¬ 𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ ¬ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥))
140 rexnal 3165 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥 ↔ ¬ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥)
141139, 140bitr4di 288 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑏𝑘) → (¬ 𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
142141pm5.32da 578 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 𝑅𝑘 𝑆) → ((𝑏𝑘 ∧ ¬ 𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
143121, 142syl5bb 282 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 𝑅𝑘 𝑆) → (𝑏 ∈ (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
144112, 120, 1433bitr4d 310 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 𝑅𝑘 𝑆) → (𝑏 ∈ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ↔ 𝑏 ∈ (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
145144eqrdv 2736 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 𝑅𝑘 𝑆) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) = (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
14674, 76, 145syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) = (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
147 difin 4192 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) = (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})
14865adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ Top)
14924restuni 22221 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 ∈ Top ∧ 𝑘 𝑆) → 𝑘 = (𝑆t 𝑘))
150148, 76, 149syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑘 = (𝑆t 𝑘))
151150difeq1d 4052 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑘 ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) = ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
152147, 151eqtr3id 2793 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) = ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
153146, 152eqtrd 2778 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) = ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
15415ad2antrr 722 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ (ran 𝑘Gen ∩ Haus))
155154elin2d 4129 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ Haus)
156 df-ima 5593 . . . . . . . . . . . . . . . . . . . . . . 23 ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) = ran ((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥))
157 resres 5893 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥)) = (2nd ↾ (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥)))
158 inss2 4160 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ ((𝑠 × 𝑘) ∖ 𝑥)
159158, 116sstri 3926 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ (𝑠 × 𝑘)
160 ssres2 5908 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ (𝑠 × 𝑘) → (2nd ↾ (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥))) ⊆ (2nd ↾ (𝑠 × 𝑘)))
161159, 160ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2nd ↾ (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥))) ⊆ (2nd ↾ (𝑠 × 𝑘))
162157, 161eqsstri 3951 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ (2nd ↾ (𝑠 × 𝑘))
163162rnssi 5838 . . . . . . . . . . . . . . . . . . . . . . 23 ran ((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ ran (2nd ↾ (𝑠 × 𝑘))
164156, 163eqsstri 3951 . . . . . . . . . . . . . . . . . . . . . 22 ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ ran (2nd ↾ (𝑠 × 𝑘))
165 f2ndres 7829 . . . . . . . . . . . . . . . . . . . . . . 23 (2nd ↾ (𝑠 × 𝑘)):(𝑠 × 𝑘)⟶𝑘
166 frn 6591 . . . . . . . . . . . . . . . . . . . . . . 23 ((2nd ↾ (𝑠 × 𝑘)):(𝑠 × 𝑘)⟶𝑘 → ran (2nd ↾ (𝑠 × 𝑘)) ⊆ 𝑘)
167165, 166ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ran (2nd ↾ (𝑠 × 𝑘)) ⊆ 𝑘
168164, 167sstri 3926 . . . . . . . . . . . . . . . . . . . . 21 ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑘
169168, 76sstrid 3928 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑆)
17012ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑅 ∈ (TopOn‘ 𝑅))
171148, 17sylib 217 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ (TopOn‘ 𝑆))
172 tx2cn 22669 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
173170, 171, 172syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
17427ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑅 ×t 𝑆) ∈ Top)
175116a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∖ 𝑥) ⊆ (𝑠 × 𝑘))
176 vex 3426 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑠 ∈ V
177 vex 3426 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑘 ∈ V
178176, 177xpex 7581 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 × 𝑘) ∈ V
179178a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑠 × 𝑘) ∈ V)
180 restabs 22224 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ×t 𝑆) ∈ Top ∧ ((𝑠 × 𝑘) ∖ 𝑥) ⊆ (𝑠 × 𝑘) ∧ (𝑠 × 𝑘) ∈ V) → (((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) = ((𝑅 ×t 𝑆) ↾t ((𝑠 × 𝑘) ∖ 𝑥)))
181174, 175, 179, 180syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) = ((𝑅 ×t 𝑆) ↾t ((𝑠 × 𝑘) ∖ 𝑥)))
18264adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑅 ∈ Top)
183154, 4syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ Top)
184176a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑠 ∈ V)
185 simprl 767 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑘 ∈ 𝒫 𝑆)
186 txrest 22690 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑠 ∈ V ∧ 𝑘 ∈ 𝒫 𝑆)) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) = ((𝑅t 𝑠) ×t (𝑆t 𝑘)))
187182, 183, 184, 185, 186syl22anc 835 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) = ((𝑅t 𝑠) ×t (𝑆t 𝑘)))
188 simprr3 1221 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑅t 𝑠) ∈ Comp)
189188adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑅t 𝑠) ∈ Comp)
190 simprr 769 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑆t 𝑘) ∈ Comp)
191 txcmp 22702 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑅t 𝑠) ∈ Comp ∧ (𝑆t 𝑘) ∈ Comp) → ((𝑅t 𝑠) ×t (𝑆t 𝑘)) ∈ Comp)
192189, 190, 191syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅t 𝑠) ×t (𝑆t 𝑘)) ∈ Comp)
193187, 192eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Comp)
194 difin 4192 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑠 × 𝑘) ∖ ((𝑠 × 𝑘) ∩ 𝑥)) = ((𝑠 × 𝑘) ∖ 𝑥)
19574, 76, 117syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑠 × 𝑘) ⊆ ( 𝑅 × 𝑆))
196182, 148, 25syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
197195, 196sseqtrd 3957 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑠 × 𝑘) ⊆ (𝑅 ×t 𝑆))
19828restuni 22221 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ×t 𝑆) ∈ Top ∧ (𝑠 × 𝑘) ⊆ (𝑅 ×t 𝑆)) → (𝑠 × 𝑘) = ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
199174, 197, 198syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑠 × 𝑘) = ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
200199difeq1d 4052 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∖ ((𝑠 × 𝑘) ∩ 𝑥)) = ( ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∖ ((𝑠 × 𝑘) ∩ 𝑥)))
201194, 200eqtr3id 2793 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∖ 𝑥) = ( ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∖ ((𝑠 × 𝑘) ∩ 𝑥)))
202 resttop 22219 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑅 ×t 𝑆) ∈ Top ∧ (𝑠 × 𝑘) ∈ V) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Top)
203174, 178, 202sylancl 585 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Top)
204 incom 4131 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑠 × 𝑘) ∩ 𝑥) = (𝑥 ∩ (𝑠 × 𝑘))
20520ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆)))
206 kgeni 22596 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆)) ∧ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Comp) → (𝑥 ∩ (𝑠 × 𝑘)) ∈ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
207205, 193, 206syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑥 ∩ (𝑠 × 𝑘)) ∈ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
208204, 207eqeltrid 2843 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∩ 𝑥) ∈ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
209 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) = ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))
210209opncld 22092 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Top ∧ ((𝑠 × 𝑘) ∩ 𝑥) ∈ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))) → ( ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∖ ((𝑠 × 𝑘) ∩ 𝑥)) ∈ (Clsd‘((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))))
211203, 208, 210syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ( ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∖ ((𝑠 × 𝑘) ∩ 𝑥)) ∈ (Clsd‘((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))))
212201, 211eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∖ 𝑥) ∈ (Clsd‘((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))))
213 cmpcld 22461 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Comp ∧ ((𝑠 × 𝑘) ∖ 𝑥) ∈ (Clsd‘((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))) → (((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) ∈ Comp)
214193, 212, 213syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) ∈ Comp)
215181, 214eqeltrrd 2840 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅 ×t 𝑆) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) ∈ Comp)
216 imacmp 22456 . . . . . . . . . . . . . . . . . . . . 21 (((2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆) ∧ ((𝑅 ×t 𝑆) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) ∈ Comp) → (𝑆t ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥))) ∈ Comp)
217173, 215, 216syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑆t ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥))) ∈ Comp)
21824hauscmp 22466 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ∈ Haus ∧ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑆 ∧ (𝑆t ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥))) ∈ Comp) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘𝑆))
219155, 169, 217, 218syl3anc 1369 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘𝑆))
220168a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑘)
22124restcldi 22232 . . . . . . . . . . . . . . . . . . 19 ((𝑘 𝑆 ∧ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘𝑆) ∧ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑘) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘(𝑆t 𝑘)))
22276, 219, 220, 221syl3anc 1369 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘(𝑆t 𝑘)))
223153, 222eqeltrrd 2840 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) ∈ (Clsd‘(𝑆t 𝑘)))
224 resttop 22219 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ Top ∧ 𝑘 ∈ 𝒫 𝑆) → (𝑆t 𝑘) ∈ Top)
225148, 185, 224syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑆t 𝑘) ∈ Top)
226 inss1 4159 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑘
227226, 150sseqtrid 3969 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ (𝑆t 𝑘))
228 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (𝑆t 𝑘) = (𝑆t 𝑘)
229228isopn2 22091 . . . . . . . . . . . . . . . . . 18 (((𝑆t 𝑘) ∈ Top ∧ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ (𝑆t 𝑘)) → ((𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑆t 𝑘) ↔ ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) ∈ (Clsd‘(𝑆t 𝑘))))
230225, 227, 229syl2anc 583 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑆t 𝑘) ↔ ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) ∈ (Clsd‘(𝑆t 𝑘))))
231223, 230mpbird 256 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑆t 𝑘))
23269, 231eqeltrid 2843 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘))
233232expr 456 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑘 ∈ 𝒫 𝑆) → ((𝑆t 𝑘) ∈ Comp → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘)))
234233ralrimiva 3107 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ∀𝑘 ∈ 𝒫 𝑆((𝑆t 𝑘) ∈ Comp → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘)))
23565, 17sylib 217 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑆 ∈ (TopOn‘ 𝑆))
236 elkgen 22595 . . . . . . . . . . . . . 14 (𝑆 ∈ (TopOn‘ 𝑆) → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ (𝑘Gen‘𝑆) ↔ ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ⊆ 𝑆 ∧ ∀𝑘 ∈ 𝒫 𝑆((𝑆t 𝑘) ∈ Comp → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘)))))
237235, 236syl 17 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ (𝑘Gen‘𝑆) ↔ ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ⊆ 𝑆 ∧ ∀𝑘 ∈ 𝒫 𝑆((𝑆t 𝑘) ∈ Comp → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘)))))
23868, 234, 237mpbir2and 709 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ (𝑘Gen‘𝑆))
23915adantr 480 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑆 ∈ (ran 𝑘Gen ∩ Haus))
240239, 2syl 17 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑆 ∈ ran 𝑘Gen)
241 kgenidm 22606 . . . . . . . . . . . . 13 (𝑆 ∈ ran 𝑘Gen → (𝑘Gen‘𝑆) = 𝑆)
242240, 241syl 17 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑘Gen‘𝑆) = 𝑆)
243238, 242eleqtrd 2841 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ 𝑆)
244 txopn 22661 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑢𝑅 ∧ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ 𝑆)) → (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑅 ×t 𝑆))
24564, 65, 66, 243, 244syl22anc 835 . . . . . . . . . 10 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑅 ×t 𝑆))
24659adantr 480 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
247 simprr1 1219 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (1st𝑦) ∈ 𝑢)
248 sneq 4568 . . . . . . . . . . . . . . 15 (𝑣 = (2nd𝑦) → {𝑣} = {(2nd𝑦)})
249248xpeq2d 5610 . . . . . . . . . . . . . 14 (𝑣 = (2nd𝑦) → (𝑠 × {𝑣}) = (𝑠 × {(2nd𝑦)}))
250249sseq1d 3948 . . . . . . . . . . . . 13 (𝑣 = (2nd𝑦) → ((𝑠 × {𝑣}) ⊆ 𝑥 ↔ (𝑠 × {(2nd𝑦)}) ⊆ 𝑥))
25134adantr 480 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (2nd𝑦) ∈ 𝑆)
252 relxp 5598 . . . . . . . . . . . . . . 15 Rel (𝑠 × {(2nd𝑦)})
253252a1i 11 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → Rel (𝑠 × {(2nd𝑦)}))
254 opelxp 5616 . . . . . . . . . . . . . . 15 (⟨𝑎, 𝑏⟩ ∈ (𝑠 × {(2nd𝑦)}) ↔ (𝑎𝑠𝑏 ∈ {(2nd𝑦)}))
25571sselda 3917 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑠) → 𝑎 ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥})
256 opeq1 4801 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑎 → ⟨𝑡, (2nd𝑦)⟩ = ⟨𝑎, (2nd𝑦)⟩)
257256eleq1d 2823 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑎 → (⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥 ↔ ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥))
258257elrab 3617 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ↔ (𝑎 𝑅 ∧ ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥))
259258simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} → ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥)
260255, 259syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑠) → ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥)
261 elsni 4575 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ {(2nd𝑦)} → 𝑏 = (2nd𝑦))
262261opeq2d 4808 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ {(2nd𝑦)} → ⟨𝑎, 𝑏⟩ = ⟨𝑎, (2nd𝑦)⟩)
263262eleq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ {(2nd𝑦)} → (⟨𝑎, 𝑏⟩ ∈ 𝑥 ↔ ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥))
264260, 263syl5ibrcom 246 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑠) → (𝑏 ∈ {(2nd𝑦)} → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
265264expimpd 453 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ((𝑎𝑠𝑏 ∈ {(2nd𝑦)}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
266254, 265syl5bi 241 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (⟨𝑎, 𝑏⟩ ∈ (𝑠 × {(2nd𝑦)}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
267253, 266relssdv 5687 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑠 × {(2nd𝑦)}) ⊆ 𝑥)
268250, 251, 267elrabd 3619 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (2nd𝑦) ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})
269247, 268opelxpd 5618 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
270246, 269eqeltrd 2839 . . . . . . . . . 10 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑦 ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
271 relxp 5598 . . . . . . . . . . . 12 Rel (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})
272271a1i 11 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → Rel (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
273 opelxp 5616 . . . . . . . . . . . 12 (⟨𝑎, 𝑏⟩ ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ↔ (𝑎𝑢𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
274126elrab 3617 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ (𝑏 𝑆 ∧ (𝑠 × {𝑏}) ⊆ 𝑥))
275274simprbi 496 . . . . . . . . . . . . . 14 (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} → (𝑠 × {𝑏}) ⊆ 𝑥)
276 simprr2 1220 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑢𝑠)
277276sselda 3917 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑢) → 𝑎𝑠)
278 vsnid 4595 . . . . . . . . . . . . . . 15 𝑏 ∈ {𝑏}
279 opelxpi 5617 . . . . . . . . . . . . . . 15 ((𝑎𝑠𝑏 ∈ {𝑏}) → ⟨𝑎, 𝑏⟩ ∈ (𝑠 × {𝑏}))
280277, 278, 279sylancl 585 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑢) → ⟨𝑎, 𝑏⟩ ∈ (𝑠 × {𝑏}))
281 ssel 3910 . . . . . . . . . . . . . 14 ((𝑠 × {𝑏}) ⊆ 𝑥 → (⟨𝑎, 𝑏⟩ ∈ (𝑠 × {𝑏}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
282275, 280, 281syl2imc 41 . . . . . . . . . . . . 13 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑢) → (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
283282expimpd 453 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ((𝑎𝑢𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
284273, 283syl5bi 241 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (⟨𝑎, 𝑏⟩ ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
285272, 284relssdv 5687 . . . . . . . . . 10 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑥)
286 eleq2 2827 . . . . . . . . . . . 12 (𝑡 = (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → (𝑦𝑡𝑦 ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
287 sseq1 3942 . . . . . . . . . . . 12 (𝑡 = (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → (𝑡𝑥 ↔ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑥))
288286, 287anbi12d 630 . . . . . . . . . . 11 (𝑡 = (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → ((𝑦𝑡𝑡𝑥) ↔ (𝑦 ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∧ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑥)))
289288rspcev 3552 . . . . . . . . . 10 (((𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑅 ×t 𝑆) ∧ (𝑦 ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∧ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑥)) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥))
290245, 270, 285, 289syl12anc 833 . . . . . . . . 9 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥))
291290expr 456 . . . . . . . 8 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ (𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅)) → (((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥)))
292291rexlimdvva 3222 . . . . . . 7 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (∃𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}∃𝑢𝑅 ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥)))
29363, 292mpd 15 . . . . . 6 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥))
294293ralrimiva 3107 . . . . 5 (((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → ∀𝑦𝑥𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥))
2956adantr 480 . . . . . 6 (((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → (𝑅 ×t 𝑆) ∈ Top)
296 eltop2 22033 . . . . . 6 ((𝑅 ×t 𝑆) ∈ Top → (𝑥 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦𝑥𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥)))
297295, 296syl 17 . . . . 5 (((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → (𝑥 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦𝑥𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥)))
298294, 297mpbird 256 . . . 4 (((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → 𝑥 ∈ (𝑅 ×t 𝑆))
299298ex 412 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆)) → 𝑥 ∈ (𝑅 ×t 𝑆)))
300299ssrdv 3923 . 2 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑘Gen‘(𝑅 ×t 𝑆)) ⊆ (𝑅 ×t 𝑆))
301 iskgen2 22607 . 2 ((𝑅 ×t 𝑆) ∈ ran 𝑘Gen ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ (𝑘Gen‘(𝑅 ×t 𝑆)) ⊆ (𝑅 ×t 𝑆)))
3026, 300, 301sylanbrc 582 1 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑅 ×t 𝑆) ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  cin 3882  wss 3883  𝒫 cpw 4530  {csn 4558  cop 4564   cuni 4836  cmpt 5153   I cid 5479   × cxp 5578  ccnv 5579  ran crn 5581  cres 5582  cima 5583  Rel wrel 5585   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  t crest 17048  Topctop 21950  TopOnctopon 21967  Clsdccld 22075   Cn ccn 22283  Hauscha 22367  Compccmp 22445  𝑛-Locally cnlly 22524  𝑘Genckgen 22592   ×t ctx 22619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-fin 8695  df-fi 9100  df-rest 17050  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-nlly 22526  df-kgen 22593  df-tx 22621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator