Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eq0rabdioph Structured version   Visualization version   GIF version

Theorem eq0rabdioph 42771
Description: This is the first of a number of theorems which allow sets to be proven Diophantine by syntactic induction, and models the correspondence between Diophantine sets and monotone existential first-order logic. This first theorem shows that the zero set of an implicit polynomial is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
eq0rabdioph ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} ∈ (Dioph‘𝑁))
Distinct variable group:   𝑡,𝑁
Allowed substitution hint:   𝐴(𝑡)

Proof of Theorem eq0rabdioph
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . . . . 8 𝑡 𝑁 ∈ ℕ0
2 nfmpt1 5209 . . . . . . . . 9 𝑡(𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)
32nfel1 2909 . . . . . . . 8 𝑡(𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))
41, 3nfan 1899 . . . . . . 7 𝑡(𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)))
5 zex 12545 . . . . . . . . . . . . . 14 ℤ ∈ V
6 nn0ssz 12559 . . . . . . . . . . . . . 14 0 ⊆ ℤ
7 mapss 8865 . . . . . . . . . . . . . 14 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0m (1...𝑁)) ⊆ (ℤ ↑m (1...𝑁)))
85, 6, 7mp2an 692 . . . . . . . . . . . . 13 (ℕ0m (1...𝑁)) ⊆ (ℤ ↑m (1...𝑁))
98sseli 3945 . . . . . . . . . . . 12 (𝑡 ∈ (ℕ0m (1...𝑁)) → 𝑡 ∈ (ℤ ↑m (1...𝑁)))
109adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → 𝑡 ∈ (ℤ ↑m (1...𝑁)))
11 mzpf 42731 . . . . . . . . . . . . 13 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴):(ℤ ↑m (1...𝑁))⟶ℤ)
12 mptfcl 42715 . . . . . . . . . . . . . 14 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴):(ℤ ↑m (1...𝑁))⟶ℤ → (𝑡 ∈ (ℤ ↑m (1...𝑁)) → 𝐴 ∈ ℤ))
1312imp 406 . . . . . . . . . . . . 13 (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴):(ℤ ↑m (1...𝑁))⟶ℤ ∧ 𝑡 ∈ (ℤ ↑m (1...𝑁))) → 𝐴 ∈ ℤ)
1411, 9, 13syl2an 596 . . . . . . . . . . . 12 (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → 𝐴 ∈ ℤ)
1514adantll 714 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → 𝐴 ∈ ℤ)
16 eqid 2730 . . . . . . . . . . . 12 (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) = (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)
1716fvmpt2 6982 . . . . . . . . . . 11 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ∧ 𝐴 ∈ ℤ) → ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 𝐴)
1810, 15, 17syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 𝐴)
1918eqcomd 2736 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → 𝐴 = ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡))
2019eqeq1d 2732 . . . . . . . 8 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → (𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0))
2120ex 412 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℕ0m (1...𝑁)) → (𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0)))
224, 21ralrimi 3236 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → ∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0))
23 rabbi 3439 . . . . . 6 (∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0) ↔ {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0})
2422, 23sylib 218 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0})
25 nfcv 2892 . . . . . 6 𝑡(ℕ0m (1...𝑁))
26 nfcv 2892 . . . . . 6 𝑎(ℕ0m (1...𝑁))
27 nfv 1914 . . . . . 6 𝑎((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0
28 nffvmpt1 6872 . . . . . . 7 𝑡((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎)
2928nfeq1 2908 . . . . . 6 𝑡((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0
30 fveqeq2 6870 . . . . . 6 (𝑡 = 𝑎 → (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0))
3125, 26, 27, 29, 30cbvrabw 3444 . . . . 5 {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0}
3224, 31eqtrdi 2781 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0})
33 df-rab 3409 . . . 4 {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0} = {𝑎 ∣ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0)}
3432, 33eqtrdi 2781 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∣ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0)})
35 elmapi 8825 . . . . . . . . . 10 (𝑏 ∈ (ℕ0m (1...𝑁)) → 𝑏:(1...𝑁)⟶ℕ0)
36 ffn 6691 . . . . . . . . . 10 (𝑏:(1...𝑁)⟶ℕ0𝑏 Fn (1...𝑁))
37 fnresdm 6640 . . . . . . . . . 10 (𝑏 Fn (1...𝑁) → (𝑏 ↾ (1...𝑁)) = 𝑏)
3835, 36, 373syl 18 . . . . . . . . 9 (𝑏 ∈ (ℕ0m (1...𝑁)) → (𝑏 ↾ (1...𝑁)) = 𝑏)
3938eqeq2d 2741 . . . . . . . 8 (𝑏 ∈ (ℕ0m (1...𝑁)) → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑎 = 𝑏))
40 equcom 2018 . . . . . . . 8 (𝑎 = 𝑏𝑏 = 𝑎)
4139, 40bitrdi 287 . . . . . . 7 (𝑏 ∈ (ℕ0m (1...𝑁)) → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑏 = 𝑎))
4241anbi1d 631 . . . . . 6 (𝑏 ∈ (ℕ0m (1...𝑁)) → ((𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ (𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)))
4342rexbiia 3075 . . . . 5 (∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0))
44 fveqeq2 6870 . . . . . 6 (𝑏 = 𝑎 → (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0))
4544ceqsrexbv 3625 . . . . 5 (∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0))
4643, 45bitr2i 276 . . . 4 ((𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0) ↔ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0))
4746abbii 2797 . . 3 {𝑎 ∣ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)}
4834, 47eqtrdi 2781 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)})
49 simpl 482 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → 𝑁 ∈ ℕ0)
50 nn0z 12561 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
51 uzid 12815 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
5250, 51syl 17 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁))
5352adantr 480 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → 𝑁 ∈ (ℤ𝑁))
54 simpr 484 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)))
55 eldioph 42753 . . 3 ((𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)} ∈ (Dioph‘𝑁))
5649, 53, 54, 55syl3anc 1373 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)} ∈ (Dioph‘𝑁))
5748, 56eqeltrd 2829 1 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  wss 3917  cmpt 5191  cres 5643   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  0cc0 11075  1c1 11076  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  mzPolycmzp 42717  Diophcdioph 42750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-mzpcl 42718  df-mzp 42719  df-dioph 42751
This theorem is referenced by:  eqrabdioph  42772  0dioph  42773  vdioph  42774  rmydioph  43010  expdioph  43019
  Copyright terms: Public domain W3C validator