Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eq0rabdioph Structured version   Visualization version   GIF version

Theorem eq0rabdioph 41085
Description: This is the first of a number of theorems which allow sets to be proven Diophantine by syntactic induction, and models the correspondence between Diophantine sets and monotone existential first-order logic. This first theorem shows that the zero set of an implicit polynomial is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
eq0rabdioph ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} ∈ (Dioph‘𝑁))
Distinct variable group:   𝑡,𝑁
Allowed substitution hint:   𝐴(𝑡)

Proof of Theorem eq0rabdioph
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . . . . . . 8 𝑡 𝑁 ∈ ℕ0
2 nfmpt1 5213 . . . . . . . . 9 𝑡(𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)
32nfel1 2923 . . . . . . . 8 𝑡(𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))
41, 3nfan 1902 . . . . . . 7 𝑡(𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)))
5 zex 12508 . . . . . . . . . . . . . 14 ℤ ∈ V
6 nn0ssz 12522 . . . . . . . . . . . . . 14 0 ⊆ ℤ
7 mapss 8827 . . . . . . . . . . . . . 14 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0m (1...𝑁)) ⊆ (ℤ ↑m (1...𝑁)))
85, 6, 7mp2an 690 . . . . . . . . . . . . 13 (ℕ0m (1...𝑁)) ⊆ (ℤ ↑m (1...𝑁))
98sseli 3940 . . . . . . . . . . . 12 (𝑡 ∈ (ℕ0m (1...𝑁)) → 𝑡 ∈ (ℤ ↑m (1...𝑁)))
109adantl 482 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → 𝑡 ∈ (ℤ ↑m (1...𝑁)))
11 mzpf 41045 . . . . . . . . . . . . 13 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴):(ℤ ↑m (1...𝑁))⟶ℤ)
12 mptfcl 41029 . . . . . . . . . . . . . 14 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴):(ℤ ↑m (1...𝑁))⟶ℤ → (𝑡 ∈ (ℤ ↑m (1...𝑁)) → 𝐴 ∈ ℤ))
1312imp 407 . . . . . . . . . . . . 13 (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴):(ℤ ↑m (1...𝑁))⟶ℤ ∧ 𝑡 ∈ (ℤ ↑m (1...𝑁))) → 𝐴 ∈ ℤ)
1411, 9, 13syl2an 596 . . . . . . . . . . . 12 (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → 𝐴 ∈ ℤ)
1514adantll 712 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → 𝐴 ∈ ℤ)
16 eqid 2736 . . . . . . . . . . . 12 (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) = (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)
1716fvmpt2 6959 . . . . . . . . . . 11 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ∧ 𝐴 ∈ ℤ) → ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 𝐴)
1810, 15, 17syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 𝐴)
1918eqcomd 2742 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → 𝐴 = ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡))
2019eqeq1d 2738 . . . . . . . 8 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → (𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0))
2120ex 413 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℕ0m (1...𝑁)) → (𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0)))
224, 21ralrimi 3240 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → ∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0))
23 rabbi 3432 . . . . . 6 (∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0) ↔ {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0})
2422, 23sylib 217 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0})
25 nfcv 2907 . . . . . 6 𝑡(ℕ0m (1...𝑁))
26 nfcv 2907 . . . . . 6 𝑎(ℕ0m (1...𝑁))
27 nfv 1917 . . . . . 6 𝑎((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0
28 nffvmpt1 6853 . . . . . . 7 𝑡((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎)
2928nfeq1 2922 . . . . . 6 𝑡((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0
30 fveqeq2 6851 . . . . . 6 (𝑡 = 𝑎 → (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0))
3125, 26, 27, 29, 30cbvrabw 3439 . . . . 5 {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0}
3224, 31eqtrdi 2792 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0})
33 df-rab 3408 . . . 4 {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0} = {𝑎 ∣ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0)}
3432, 33eqtrdi 2792 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∣ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0)})
35 elmapi 8787 . . . . . . . . . 10 (𝑏 ∈ (ℕ0m (1...𝑁)) → 𝑏:(1...𝑁)⟶ℕ0)
36 ffn 6668 . . . . . . . . . 10 (𝑏:(1...𝑁)⟶ℕ0𝑏 Fn (1...𝑁))
37 fnresdm 6620 . . . . . . . . . 10 (𝑏 Fn (1...𝑁) → (𝑏 ↾ (1...𝑁)) = 𝑏)
3835, 36, 373syl 18 . . . . . . . . 9 (𝑏 ∈ (ℕ0m (1...𝑁)) → (𝑏 ↾ (1...𝑁)) = 𝑏)
3938eqeq2d 2747 . . . . . . . 8 (𝑏 ∈ (ℕ0m (1...𝑁)) → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑎 = 𝑏))
40 equcom 2021 . . . . . . . 8 (𝑎 = 𝑏𝑏 = 𝑎)
4139, 40bitrdi 286 . . . . . . 7 (𝑏 ∈ (ℕ0m (1...𝑁)) → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑏 = 𝑎))
4241anbi1d 630 . . . . . 6 (𝑏 ∈ (ℕ0m (1...𝑁)) → ((𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ (𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)))
4342rexbiia 3095 . . . . 5 (∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0))
44 fveqeq2 6851 . . . . . 6 (𝑏 = 𝑎 → (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0))
4544ceqsrexbv 3606 . . . . 5 (∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0))
4643, 45bitr2i 275 . . . 4 ((𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0) ↔ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0))
4746abbii 2806 . . 3 {𝑎 ∣ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)}
4834, 47eqtrdi 2792 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)})
49 simpl 483 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → 𝑁 ∈ ℕ0)
50 nn0z 12524 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
51 uzid 12778 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
5250, 51syl 17 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁))
5352adantr 481 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → 𝑁 ∈ (ℤ𝑁))
54 simpr 485 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)))
55 eldioph 41067 . . 3 ((𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)} ∈ (Dioph‘𝑁))
5649, 53, 54, 55syl3anc 1371 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)} ∈ (Dioph‘𝑁))
5748, 56eqeltrd 2838 1 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {cab 2713  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  wss 3910  cmpt 5188  cres 5635   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  0cc0 11051  1c1 11052  0cn0 12413  cz 12499  cuz 12763  ...cfz 13424  mzPolycmzp 41031  Diophcdioph 41064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-mzpcl 41032  df-mzp 41033  df-dioph 41065
This theorem is referenced by:  eqrabdioph  41086  0dioph  41087  vdioph  41088  rmydioph  41324  expdioph  41333
  Copyright terms: Public domain W3C validator