Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eq0rabdioph Structured version   Visualization version   GIF version

Theorem eq0rabdioph 42003
Description: This is the first of a number of theorems which allow sets to be proven Diophantine by syntactic induction, and models the correspondence between Diophantine sets and monotone existential first-order logic. This first theorem shows that the zero set of an implicit polynomial is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
eq0rabdioph ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} ∈ (Dioph‘𝑁))
Distinct variable group:   𝑡,𝑁
Allowed substitution hint:   𝐴(𝑡)

Proof of Theorem eq0rabdioph
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1909 . . . . . . . 8 𝑡 𝑁 ∈ ℕ0
2 nfmpt1 5246 . . . . . . . . 9 𝑡(𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)
32nfel1 2911 . . . . . . . 8 𝑡(𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))
41, 3nfan 1894 . . . . . . 7 𝑡(𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)))
5 zex 12564 . . . . . . . . . . . . . 14 ℤ ∈ V
6 nn0ssz 12578 . . . . . . . . . . . . . 14 0 ⊆ ℤ
7 mapss 8879 . . . . . . . . . . . . . 14 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0m (1...𝑁)) ⊆ (ℤ ↑m (1...𝑁)))
85, 6, 7mp2an 689 . . . . . . . . . . . . 13 (ℕ0m (1...𝑁)) ⊆ (ℤ ↑m (1...𝑁))
98sseli 3970 . . . . . . . . . . . 12 (𝑡 ∈ (ℕ0m (1...𝑁)) → 𝑡 ∈ (ℤ ↑m (1...𝑁)))
109adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → 𝑡 ∈ (ℤ ↑m (1...𝑁)))
11 mzpf 41963 . . . . . . . . . . . . 13 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴):(ℤ ↑m (1...𝑁))⟶ℤ)
12 mptfcl 41947 . . . . . . . . . . . . . 14 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴):(ℤ ↑m (1...𝑁))⟶ℤ → (𝑡 ∈ (ℤ ↑m (1...𝑁)) → 𝐴 ∈ ℤ))
1312imp 406 . . . . . . . . . . . . 13 (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴):(ℤ ↑m (1...𝑁))⟶ℤ ∧ 𝑡 ∈ (ℤ ↑m (1...𝑁))) → 𝐴 ∈ ℤ)
1411, 9, 13syl2an 595 . . . . . . . . . . . 12 (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → 𝐴 ∈ ℤ)
1514adantll 711 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → 𝐴 ∈ ℤ)
16 eqid 2724 . . . . . . . . . . . 12 (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) = (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)
1716fvmpt2 6999 . . . . . . . . . . 11 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ∧ 𝐴 ∈ ℤ) → ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 𝐴)
1810, 15, 17syl2anc 583 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 𝐴)
1918eqcomd 2730 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → 𝐴 = ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡))
2019eqeq1d 2726 . . . . . . . 8 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → (𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0))
2120ex 412 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℕ0m (1...𝑁)) → (𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0)))
224, 21ralrimi 3246 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → ∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0))
23 rabbi 3454 . . . . . 6 (∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0) ↔ {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0})
2422, 23sylib 217 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0})
25 nfcv 2895 . . . . . 6 𝑡(ℕ0m (1...𝑁))
26 nfcv 2895 . . . . . 6 𝑎(ℕ0m (1...𝑁))
27 nfv 1909 . . . . . 6 𝑎((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0
28 nffvmpt1 6892 . . . . . . 7 𝑡((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎)
2928nfeq1 2910 . . . . . 6 𝑡((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0
30 fveqeq2 6890 . . . . . 6 (𝑡 = 𝑎 → (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0))
3125, 26, 27, 29, 30cbvrabw 3459 . . . . 5 {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0}
3224, 31eqtrdi 2780 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0})
33 df-rab 3425 . . . 4 {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0} = {𝑎 ∣ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0)}
3432, 33eqtrdi 2780 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∣ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0)})
35 elmapi 8839 . . . . . . . . . 10 (𝑏 ∈ (ℕ0m (1...𝑁)) → 𝑏:(1...𝑁)⟶ℕ0)
36 ffn 6707 . . . . . . . . . 10 (𝑏:(1...𝑁)⟶ℕ0𝑏 Fn (1...𝑁))
37 fnresdm 6659 . . . . . . . . . 10 (𝑏 Fn (1...𝑁) → (𝑏 ↾ (1...𝑁)) = 𝑏)
3835, 36, 373syl 18 . . . . . . . . 9 (𝑏 ∈ (ℕ0m (1...𝑁)) → (𝑏 ↾ (1...𝑁)) = 𝑏)
3938eqeq2d 2735 . . . . . . . 8 (𝑏 ∈ (ℕ0m (1...𝑁)) → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑎 = 𝑏))
40 equcom 2013 . . . . . . . 8 (𝑎 = 𝑏𝑏 = 𝑎)
4139, 40bitrdi 287 . . . . . . 7 (𝑏 ∈ (ℕ0m (1...𝑁)) → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑏 = 𝑎))
4241anbi1d 629 . . . . . 6 (𝑏 ∈ (ℕ0m (1...𝑁)) → ((𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ (𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)))
4342rexbiia 3084 . . . . 5 (∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0))
44 fveqeq2 6890 . . . . . 6 (𝑏 = 𝑎 → (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0))
4544ceqsrexbv 3636 . . . . 5 (∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0))
4643, 45bitr2i 276 . . . 4 ((𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0) ↔ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0))
4746abbii 2794 . . 3 {𝑎 ∣ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)}
4834, 47eqtrdi 2780 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)})
49 simpl 482 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → 𝑁 ∈ ℕ0)
50 nn0z 12580 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
51 uzid 12834 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
5250, 51syl 17 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁))
5352adantr 480 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → 𝑁 ∈ (ℤ𝑁))
54 simpr 484 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)))
55 eldioph 41985 . . 3 ((𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)} ∈ (Dioph‘𝑁))
5649, 53, 54, 55syl3anc 1368 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)} ∈ (Dioph‘𝑁))
5748, 56eqeltrd 2825 1 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  {cab 2701  wral 3053  wrex 3062  {crab 3424  Vcvv 3466  wss 3940  cmpt 5221  cres 5668   Fn wfn 6528  wf 6529  cfv 6533  (class class class)co 7401  m cmap 8816  0cc0 11106  1c1 11107  0cn0 12469  cz 12555  cuz 12819  ...cfz 13481  mzPolycmzp 41949  Diophcdioph 41982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-n0 12470  df-z 12556  df-uz 12820  df-fz 13482  df-mzpcl 41950  df-mzp 41951  df-dioph 41983
This theorem is referenced by:  eqrabdioph  42004  0dioph  42005  vdioph  42006  rmydioph  42242  expdioph  42251
  Copyright terms: Public domain W3C validator