Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eq0rabdioph Structured version   Visualization version   GIF version

Theorem eq0rabdioph 39717
Description: This is the first of a number of theorems which allow sets to be proven Diophantine by syntactic induction, and models the correspondence between Diophantine sets and monotone existential first-order logic. This first theorem shows that the zero set of an implicit polynomial is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
eq0rabdioph ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} ∈ (Dioph‘𝑁))
Distinct variable group:   𝑡,𝑁
Allowed substitution hint:   𝐴(𝑡)

Proof of Theorem eq0rabdioph
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . . . . 8 𝑡 𝑁 ∈ ℕ0
2 nfmpt1 5128 . . . . . . . . 9 𝑡(𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)
32nfel1 2971 . . . . . . . 8 𝑡(𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))
41, 3nfan 1900 . . . . . . 7 𝑡(𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)))
5 zex 11978 . . . . . . . . . . . . . 14 ℤ ∈ V
6 nn0ssz 11991 . . . . . . . . . . . . . 14 0 ⊆ ℤ
7 mapss 8436 . . . . . . . . . . . . . 14 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0m (1...𝑁)) ⊆ (ℤ ↑m (1...𝑁)))
85, 6, 7mp2an 691 . . . . . . . . . . . . 13 (ℕ0m (1...𝑁)) ⊆ (ℤ ↑m (1...𝑁))
98sseli 3911 . . . . . . . . . . . 12 (𝑡 ∈ (ℕ0m (1...𝑁)) → 𝑡 ∈ (ℤ ↑m (1...𝑁)))
109adantl 485 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → 𝑡 ∈ (ℤ ↑m (1...𝑁)))
11 mzpf 39677 . . . . . . . . . . . . 13 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴):(ℤ ↑m (1...𝑁))⟶ℤ)
12 mptfcl 39661 . . . . . . . . . . . . . 14 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴):(ℤ ↑m (1...𝑁))⟶ℤ → (𝑡 ∈ (ℤ ↑m (1...𝑁)) → 𝐴 ∈ ℤ))
1312imp 410 . . . . . . . . . . . . 13 (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴):(ℤ ↑m (1...𝑁))⟶ℤ ∧ 𝑡 ∈ (ℤ ↑m (1...𝑁))) → 𝐴 ∈ ℤ)
1411, 9, 13syl2an 598 . . . . . . . . . . . 12 (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → 𝐴 ∈ ℤ)
1514adantll 713 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → 𝐴 ∈ ℤ)
16 eqid 2798 . . . . . . . . . . . 12 (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) = (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)
1716fvmpt2 6756 . . . . . . . . . . 11 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ∧ 𝐴 ∈ ℤ) → ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 𝐴)
1810, 15, 17syl2anc 587 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 𝐴)
1918eqcomd 2804 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → 𝐴 = ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡))
2019eqeq1d 2800 . . . . . . . 8 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → (𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0))
2120ex 416 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℕ0m (1...𝑁)) → (𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0)))
224, 21ralrimi 3180 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → ∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0))
23 rabbi 3336 . . . . . 6 (∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0) ↔ {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0})
2422, 23sylib 221 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0})
25 nfcv 2955 . . . . . 6 𝑡(ℕ0m (1...𝑁))
26 nfcv 2955 . . . . . 6 𝑎(ℕ0m (1...𝑁))
27 nfv 1915 . . . . . 6 𝑎((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0
28 nffvmpt1 6656 . . . . . . 7 𝑡((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎)
2928nfeq1 2970 . . . . . 6 𝑡((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0
30 fveqeq2 6654 . . . . . 6 (𝑡 = 𝑎 → (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0))
3125, 26, 27, 29, 30cbvrabw 3437 . . . . 5 {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑡) = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0}
3224, 31eqtrdi 2849 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0})
33 df-rab 3115 . . . 4 {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0} = {𝑎 ∣ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0)}
3432, 33eqtrdi 2849 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∣ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0)})
35 elmapi 8411 . . . . . . . . . 10 (𝑏 ∈ (ℕ0m (1...𝑁)) → 𝑏:(1...𝑁)⟶ℕ0)
36 ffn 6487 . . . . . . . . . 10 (𝑏:(1...𝑁)⟶ℕ0𝑏 Fn (1...𝑁))
37 fnresdm 6438 . . . . . . . . . 10 (𝑏 Fn (1...𝑁) → (𝑏 ↾ (1...𝑁)) = 𝑏)
3835, 36, 373syl 18 . . . . . . . . 9 (𝑏 ∈ (ℕ0m (1...𝑁)) → (𝑏 ↾ (1...𝑁)) = 𝑏)
3938eqeq2d 2809 . . . . . . . 8 (𝑏 ∈ (ℕ0m (1...𝑁)) → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑎 = 𝑏))
40 equcom 2025 . . . . . . . 8 (𝑎 = 𝑏𝑏 = 𝑎)
4139, 40syl6bb 290 . . . . . . 7 (𝑏 ∈ (ℕ0m (1...𝑁)) → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑏 = 𝑎))
4241anbi1d 632 . . . . . 6 (𝑏 ∈ (ℕ0m (1...𝑁)) → ((𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ (𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)))
4342rexbiia 3209 . . . . 5 (∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0))
44 fveqeq2 6654 . . . . . 6 (𝑏 = 𝑎 → (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0 ↔ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0))
4544ceqsrexbv 3598 . . . . 5 (∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0))
4643, 45bitr2i 279 . . . 4 ((𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0) ↔ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0))
4746abbii 2863 . . 3 {𝑎 ∣ (𝑎 ∈ (ℕ0m (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑎) = 0)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)}
4834, 47eqtrdi 2849 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)})
49 simpl 486 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → 𝑁 ∈ ℕ0)
50 nn0z 11993 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
51 uzid 12246 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
5250, 51syl 17 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁))
5352adantr 484 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → 𝑁 ∈ (ℤ𝑁))
54 simpr 488 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)))
55 eldioph 39699 . . 3 ((𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)} ∈ (Dioph‘𝑁))
5649, 53, 54, 55syl3anc 1368 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)} ∈ (Dioph‘𝑁))
5748, 56eqeltrd 2890 1 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 = 0} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  wss 3881  cmpt 5110  cres 5521   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  0cc0 10526  1c1 10527  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  mzPolycmzp 39663  Diophcdioph 39696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-mzpcl 39664  df-mzp 39665  df-dioph 39697
This theorem is referenced by:  eqrabdioph  39718  0dioph  39719  vdioph  39720  rmydioph  39955  expdioph  39964
  Copyright terms: Public domain W3C validator