Step | Hyp | Ref
| Expression |
1 | | nfv 1917 |
. . . . . . . 8
β’
β²π‘ π β
β0 |
2 | | nfmpt1 5255 |
. . . . . . . . 9
β’
β²π‘(π‘ β (β€ βm
(1...π)) β¦ π΄) |
3 | 2 | nfel1 2919 |
. . . . . . . 8
β’
β²π‘(π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)) |
4 | 1, 3 | nfan 1902 |
. . . . . . 7
β’
β²π‘(π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))) |
5 | | zex 12563 |
. . . . . . . . . . . . . 14
β’ β€
β V |
6 | | nn0ssz 12577 |
. . . . . . . . . . . . . 14
β’
β0 β β€ |
7 | | mapss 8879 |
. . . . . . . . . . . . . 14
β’ ((β€
β V β§ β0 β β€) β (β0
βm (1...π))
β (β€ βm (1...π))) |
8 | 5, 6, 7 | mp2an 690 |
. . . . . . . . . . . . 13
β’
(β0 βm (1...π)) β (β€ βm
(1...π)) |
9 | 8 | sseli 3977 |
. . . . . . . . . . . 12
β’ (π‘ β (β0
βm (1...π))
β π‘ β (β€
βm (1...π))) |
10 | 9 | adantl 482 |
. . . . . . . . . . 11
β’ (((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β§ π‘ β
(β0 βm (1...π))) β π‘ β (β€ βm
(1...π))) |
11 | | mzpf 41459 |
. . . . . . . . . . . . 13
β’ ((π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))
β (π‘ β (β€
βm (1...π))
β¦ π΄):(β€
βm (1...π))βΆβ€) |
12 | | mptfcl 41443 |
. . . . . . . . . . . . . 14
β’ ((π‘ β (β€
βm (1...π))
β¦ π΄):(β€
βm (1...π))βΆβ€ β (π‘ β (β€ βm
(1...π)) β π΄ β
β€)) |
13 | 12 | imp 407 |
. . . . . . . . . . . . 13
β’ (((π‘ β (β€
βm (1...π))
β¦ π΄):(β€
βm (1...π))βΆβ€ β§ π‘ β (β€ βm
(1...π))) β π΄ β
β€) |
14 | 11, 9, 13 | syl2an 596 |
. . . . . . . . . . . 12
β’ (((π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))
β§ π‘ β
(β0 βm (1...π))) β π΄ β β€) |
15 | 14 | adantll 712 |
. . . . . . . . . . 11
β’ (((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β§ π‘ β
(β0 βm (1...π))) β π΄ β β€) |
16 | | eqid 2732 |
. . . . . . . . . . . 12
β’ (π‘ β (β€
βm (1...π))
β¦ π΄) = (π‘ β (β€
βm (1...π))
β¦ π΄) |
17 | 16 | fvmpt2 7006 |
. . . . . . . . . . 11
β’ ((π‘ β (β€
βm (1...π))
β§ π΄ β β€)
β ((π‘ β (β€
βm (1...π))
β¦ π΄)βπ‘) = π΄) |
18 | 10, 15, 17 | syl2anc 584 |
. . . . . . . . . 10
β’ (((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β§ π‘ β
(β0 βm (1...π))) β ((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ‘) = π΄) |
19 | 18 | eqcomd 2738 |
. . . . . . . . 9
β’ (((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β§ π‘ β
(β0 βm (1...π))) β π΄ = ((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ‘)) |
20 | 19 | eqeq1d 2734 |
. . . . . . . 8
β’ (((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β§ π‘ β
(β0 βm (1...π))) β (π΄ = 0 β ((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ‘) = 0)) |
21 | 20 | ex 413 |
. . . . . . 7
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β (π‘ β
(β0 βm (1...π)) β (π΄ = 0 β ((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ‘) = 0))) |
22 | 4, 21 | ralrimi 3254 |
. . . . . 6
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β βπ‘ β
(β0 βm (1...π))(π΄ = 0 β ((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ‘) = 0)) |
23 | | rabbi 3462 |
. . . . . 6
β’
(βπ‘ β
(β0 βm (1...π))(π΄ = 0 β ((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ‘) = 0) β {π‘ β (β0
βm (1...π))
β£ π΄ = 0} = {π‘ β (β0
βm (1...π))
β£ ((π‘ β (β€
βm (1...π))
β¦ π΄)βπ‘) = 0}) |
24 | 22, 23 | sylib 217 |
. . . . 5
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β {π‘ β
(β0 βm (1...π)) β£ π΄ = 0} = {π‘ β (β0
βm (1...π))
β£ ((π‘ β (β€
βm (1...π))
β¦ π΄)βπ‘) = 0}) |
25 | | nfcv 2903 |
. . . . . 6
β’
β²π‘(β0 βm
(1...π)) |
26 | | nfcv 2903 |
. . . . . 6
β’
β²π(β0 βm
(1...π)) |
27 | | nfv 1917 |
. . . . . 6
β’
β²π((π‘ β (β€
βm (1...π))
β¦ π΄)βπ‘) = 0 |
28 | | nffvmpt1 6899 |
. . . . . . 7
β’
β²π‘((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ) |
29 | 28 | nfeq1 2918 |
. . . . . 6
β’
β²π‘((π‘ β (β€
βm (1...π))
β¦ π΄)βπ) = 0 |
30 | | fveqeq2 6897 |
. . . . . 6
β’ (π‘ = π β (((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ‘) = 0 β ((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ) = 0)) |
31 | 25, 26, 27, 29, 30 | cbvrabw 3467 |
. . . . 5
β’ {π‘ β (β0
βm (1...π))
β£ ((π‘ β (β€
βm (1...π))
β¦ π΄)βπ‘) = 0} = {π β (β0
βm (1...π))
β£ ((π‘ β (β€
βm (1...π))
β¦ π΄)βπ) = 0} |
32 | 24, 31 | eqtrdi 2788 |
. . . 4
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β {π‘ β
(β0 βm (1...π)) β£ π΄ = 0} = {π β (β0
βm (1...π))
β£ ((π‘ β (β€
βm (1...π))
β¦ π΄)βπ) = 0}) |
33 | | df-rab 3433 |
. . . 4
β’ {π β (β0
βm (1...π))
β£ ((π‘ β (β€
βm (1...π))
β¦ π΄)βπ) = 0} = {π β£ (π β (β0
βm (1...π))
β§ ((π‘ β (β€
βm (1...π))
β¦ π΄)βπ) = 0)} |
34 | 32, 33 | eqtrdi 2788 |
. . 3
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β {π‘ β
(β0 βm (1...π)) β£ π΄ = 0} = {π β£ (π β (β0
βm (1...π))
β§ ((π‘ β (β€
βm (1...π))
β¦ π΄)βπ) = 0)}) |
35 | | elmapi 8839 |
. . . . . . . . . 10
β’ (π β (β0
βm (1...π))
β π:(1...π)βΆβ0) |
36 | | ffn 6714 |
. . . . . . . . . 10
β’ (π:(1...π)βΆβ0 β π Fn (1...π)) |
37 | | fnresdm 6666 |
. . . . . . . . . 10
β’ (π Fn (1...π) β (π βΎ (1...π)) = π) |
38 | 35, 36, 37 | 3syl 18 |
. . . . . . . . 9
β’ (π β (β0
βm (1...π))
β (π βΎ
(1...π)) = π) |
39 | 38 | eqeq2d 2743 |
. . . . . . . 8
β’ (π β (β0
βm (1...π))
β (π = (π βΎ (1...π)) β π = π)) |
40 | | equcom 2021 |
. . . . . . . 8
β’ (π = π β π = π) |
41 | 39, 40 | bitrdi 286 |
. . . . . . 7
β’ (π β (β0
βm (1...π))
β (π = (π βΎ (1...π)) β π = π)) |
42 | 41 | anbi1d 630 |
. . . . . 6
β’ (π β (β0
βm (1...π))
β ((π = (π βΎ (1...π)) β§ ((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ) = 0) β (π = π β§ ((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ) = 0))) |
43 | 42 | rexbiia 3092 |
. . . . 5
β’
(βπ β
(β0 βm (1...π))(π = (π βΎ (1...π)) β§ ((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ) = 0) β βπ β (β0
βm (1...π))(π = π β§ ((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ) = 0)) |
44 | | fveqeq2 6897 |
. . . . . 6
β’ (π = π β (((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ) = 0 β ((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ) = 0)) |
45 | 44 | ceqsrexbv 3643 |
. . . . 5
β’
(βπ β
(β0 βm (1...π))(π = π β§ ((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ) = 0) β (π β (β0
βm (1...π))
β§ ((π‘ β (β€
βm (1...π))
β¦ π΄)βπ) = 0)) |
46 | 43, 45 | bitr2i 275 |
. . . 4
β’ ((π β (β0
βm (1...π))
β§ ((π‘ β (β€
βm (1...π))
β¦ π΄)βπ) = 0) β βπ β (β0
βm (1...π))(π = (π βΎ (1...π)) β§ ((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ) = 0)) |
47 | 46 | abbii 2802 |
. . 3
β’ {π β£ (π β (β0
βm (1...π))
β§ ((π‘ β (β€
βm (1...π))
β¦ π΄)βπ) = 0)} = {π β£ βπ β (β0
βm (1...π))(π = (π βΎ (1...π)) β§ ((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ) = 0)} |
48 | 34, 47 | eqtrdi 2788 |
. 2
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β {π‘ β
(β0 βm (1...π)) β£ π΄ = 0} = {π β£ βπ β (β0
βm (1...π))(π = (π βΎ (1...π)) β§ ((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ) = 0)}) |
49 | | simpl 483 |
. . 3
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β π β
β0) |
50 | | nn0z 12579 |
. . . . 5
β’ (π β β0
β π β
β€) |
51 | | uzid 12833 |
. . . . 5
β’ (π β β€ β π β
(β€β₯βπ)) |
52 | 50, 51 | syl 17 |
. . . 4
β’ (π β β0
β π β
(β€β₯βπ)) |
53 | 52 | adantr 481 |
. . 3
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β π β
(β€β₯βπ)) |
54 | | simpr 485 |
. . 3
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))) |
55 | | eldioph 41481 |
. . 3
β’ ((π β β0
β§ π β
(β€β₯βπ) β§ (π‘ β (β€ βm
(1...π)) β¦ π΄) β
(mzPolyβ(1...π)))
β {π β£
βπ β
(β0 βm (1...π))(π = (π βΎ (1...π)) β§ ((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ) = 0)} β (Diophβπ)) |
56 | 49, 53, 54, 55 | syl3anc 1371 |
. 2
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β {π β£
βπ β
(β0 βm (1...π))(π = (π βΎ (1...π)) β§ ((π‘ β (β€ βm
(1...π)) β¦ π΄)βπ) = 0)} β (Diophβπ)) |
57 | 48, 56 | eqeltrd 2833 |
1
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β {π‘ β
(β0 βm (1...π)) β£ π΄ = 0} β (Diophβπ)) |