Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eq0rabdioph Structured version   Visualization version   GIF version

Theorem eq0rabdioph 38018
Description: This is the first of a number of theorems which allow sets to be proven Diophantine by syntactic induction, and models the correspondence between Diophantine sets and monotone existential first-order logic. This first theorem shows that the zero set of an implicit polynomial is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
eq0rabdioph ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 = 0} ∈ (Dioph‘𝑁))
Distinct variable group:   𝑡,𝑁
Allowed substitution hint:   𝐴(𝑡)

Proof of Theorem eq0rabdioph
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 2009 . . . . . . . 8 𝑡 𝑁 ∈ ℕ0
2 nfmpt1 4906 . . . . . . . . 9 𝑡(𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)
32nfel1 2922 . . . . . . . 8 𝑡(𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))
41, 3nfan 1998 . . . . . . 7 𝑡(𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)))
5 zex 11633 . . . . . . . . . . . . . 14 ℤ ∈ V
6 nn0ssz 11645 . . . . . . . . . . . . . 14 0 ⊆ ℤ
7 mapss 8105 . . . . . . . . . . . . . 14 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0𝑚 (1...𝑁)) ⊆ (ℤ ↑𝑚 (1...𝑁)))
85, 6, 7mp2an 683 . . . . . . . . . . . . 13 (ℕ0𝑚 (1...𝑁)) ⊆ (ℤ ↑𝑚 (1...𝑁))
98sseli 3757 . . . . . . . . . . . 12 (𝑡 ∈ (ℕ0𝑚 (1...𝑁)) → 𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)))
109adantl 473 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0𝑚 (1...𝑁))) → 𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)))
11 mzpf 37977 . . . . . . . . . . . . 13 ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴):(ℤ ↑𝑚 (1...𝑁))⟶ℤ)
12 mptfcl 37961 . . . . . . . . . . . . . 14 ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴):(ℤ ↑𝑚 (1...𝑁))⟶ℤ → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) → 𝐴 ∈ ℤ))
1312imp 395 . . . . . . . . . . . . 13 (((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴):(ℤ ↑𝑚 (1...𝑁))⟶ℤ ∧ 𝑡 ∈ (ℤ ↑𝑚 (1...𝑁))) → 𝐴 ∈ ℤ)
1411, 9, 13syl2an 589 . . . . . . . . . . . 12 (((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ 𝑡 ∈ (ℕ0𝑚 (1...𝑁))) → 𝐴 ∈ ℤ)
1514adantll 705 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0𝑚 (1...𝑁))) → 𝐴 ∈ ℤ)
16 eqid 2765 . . . . . . . . . . . 12 (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) = (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)
1716fvmpt2 6480 . . . . . . . . . . 11 ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ∧ 𝐴 ∈ ℤ) → ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 𝐴)
1810, 15, 17syl2anc 579 . . . . . . . . . 10 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0𝑚 (1...𝑁))) → ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 𝐴)
1918eqcomd 2771 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0𝑚 (1...𝑁))) → 𝐴 = ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡))
2019eqeq1d 2767 . . . . . . . 8 (((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℕ0𝑚 (1...𝑁))) → (𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 0))
2120ex 401 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℕ0𝑚 (1...𝑁)) → (𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 0)))
224, 21ralrimi 3104 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → ∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))(𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 0))
23 rabbi 3268 . . . . . 6 (∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))(𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 0) ↔ {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 = 0} = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 0})
2422, 23sylib 209 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 = 0} = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 0})
25 nfcv 2907 . . . . . 6 𝑡(ℕ0𝑚 (1...𝑁))
26 nfcv 2907 . . . . . 6 𝑎(ℕ0𝑚 (1...𝑁))
27 nfv 2009 . . . . . 6 𝑎((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 0
28 nffvmpt1 6386 . . . . . . 7 𝑡((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎)
2928nfeq1 2921 . . . . . 6 𝑡((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0
30 fveqeq2 6384 . . . . . 6 (𝑡 = 𝑎 → (((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 0 ↔ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0))
3125, 26, 27, 29, 30cbvrab 3347 . . . . 5 {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑡) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0}
3224, 31syl6eq 2815 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0})
33 df-rab 3064 . . . 4 {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0} = {𝑎 ∣ (𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0)}
3432, 33syl6eq 2815 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∣ (𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0)})
35 elmapi 8082 . . . . . . . . . 10 (𝑏 ∈ (ℕ0𝑚 (1...𝑁)) → 𝑏:(1...𝑁)⟶ℕ0)
36 ffn 6223 . . . . . . . . . 10 (𝑏:(1...𝑁)⟶ℕ0𝑏 Fn (1...𝑁))
37 fnresdm 6178 . . . . . . . . . 10 (𝑏 Fn (1...𝑁) → (𝑏 ↾ (1...𝑁)) = 𝑏)
3835, 36, 373syl 18 . . . . . . . . 9 (𝑏 ∈ (ℕ0𝑚 (1...𝑁)) → (𝑏 ↾ (1...𝑁)) = 𝑏)
3938eqeq2d 2775 . . . . . . . 8 (𝑏 ∈ (ℕ0𝑚 (1...𝑁)) → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑎 = 𝑏))
40 equcom 2115 . . . . . . . 8 (𝑎 = 𝑏𝑏 = 𝑎)
4139, 40syl6bb 278 . . . . . . 7 (𝑏 ∈ (ℕ0𝑚 (1...𝑁)) → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑏 = 𝑎))
4241anbi1d 623 . . . . . 6 (𝑏 ∈ (ℕ0𝑚 (1...𝑁)) → ((𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ (𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)))
4342rexbiia 3187 . . . . 5 (∃𝑏 ∈ (ℕ0𝑚 (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ ∃𝑏 ∈ (ℕ0𝑚 (1...𝑁))(𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0))
44 fveqeq2 6384 . . . . . 6 (𝑏 = 𝑎 → (((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0 ↔ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0))
4544ceqsrexbv 3490 . . . . 5 (∃𝑏 ∈ (ℕ0𝑚 (1...𝑁))(𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ (𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0))
4643, 45bitr2i 267 . . . 4 ((𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0) ↔ ∃𝑏 ∈ (ℕ0𝑚 (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0))
4746abbii 2882 . . 3 {𝑎 ∣ (𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑎) = 0)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0𝑚 (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)}
4834, 47syl6eq 2815 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0𝑚 (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)})
49 simpl 474 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → 𝑁 ∈ ℕ0)
50 nn0z 11647 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
51 uzid 11901 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
5250, 51syl 17 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁))
5352adantr 472 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → 𝑁 ∈ (ℤ𝑁))
54 simpr 477 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)))
55 eldioph 37999 . . 3 ((𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0𝑚 (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)} ∈ (Dioph‘𝑁))
5649, 53, 54, 55syl3anc 1490 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0𝑚 (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘𝑏) = 0)} ∈ (Dioph‘𝑁))
5748, 56eqeltrd 2844 1 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 = 0} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  {cab 2751  wral 3055  wrex 3056  {crab 3059  Vcvv 3350  wss 3732  cmpt 4888  cres 5279   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  𝑚 cmap 8060  0cc0 10189  1c1 10190  0cn0 11538  cz 11624  cuz 11886  ...cfz 12533  mzPolycmzp 37963  Diophcdioph 37996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-mzpcl 37964  df-mzp 37965  df-dioph 37997
This theorem is referenced by:  eqrabdioph  38019  0dioph  38020  vdioph  38021  rmydioph  38258  expdioph  38267
  Copyright terms: Public domain W3C validator