Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eq0rabdioph Structured version   Visualization version   GIF version

Theorem eq0rabdioph 41499
Description: This is the first of a number of theorems which allow sets to be proven Diophantine by syntactic induction, and models the correspondence between Diophantine sets and monotone existential first-order logic. This first theorem shows that the zero set of an implicit polynomial is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
eq0rabdioph ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 0} ∈ (Diophβ€˜π‘))
Distinct variable group:   𝑑,𝑁
Allowed substitution hint:   𝐴(𝑑)

Proof of Theorem eq0rabdioph
Dummy variables π‘Ž 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . . . . . . 8 Ⅎ𝑑 𝑁 ∈ β„•0
2 nfmpt1 5255 . . . . . . . . 9 Ⅎ𝑑(𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)
32nfel1 2919 . . . . . . . 8 Ⅎ𝑑(𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))
41, 3nfan 1902 . . . . . . 7 Ⅎ𝑑(𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)))
5 zex 12563 . . . . . . . . . . . . . 14 β„€ ∈ V
6 nn0ssz 12577 . . . . . . . . . . . . . 14 β„•0 βŠ† β„€
7 mapss 8879 . . . . . . . . . . . . . 14 ((β„€ ∈ V ∧ β„•0 βŠ† β„€) β†’ (β„•0 ↑m (1...𝑁)) βŠ† (β„€ ↑m (1...𝑁)))
85, 6, 7mp2an 690 . . . . . . . . . . . . 13 (β„•0 ↑m (1...𝑁)) βŠ† (β„€ ↑m (1...𝑁))
98sseli 3977 . . . . . . . . . . . 12 (𝑑 ∈ (β„•0 ↑m (1...𝑁)) β†’ 𝑑 ∈ (β„€ ↑m (1...𝑁)))
109adantl 482 . . . . . . . . . . 11 (((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝑑 ∈ (β„€ ↑m (1...𝑁)))
11 mzpf 41459 . . . . . . . . . . . . 13 ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴):(β„€ ↑m (1...𝑁))βŸΆβ„€)
12 mptfcl 41443 . . . . . . . . . . . . . 14 ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴):(β„€ ↑m (1...𝑁))βŸΆβ„€ β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) β†’ 𝐴 ∈ β„€))
1312imp 407 . . . . . . . . . . . . 13 (((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴):(β„€ ↑m (1...𝑁))βŸΆβ„€ ∧ 𝑑 ∈ (β„€ ↑m (1...𝑁))) β†’ 𝐴 ∈ β„€)
1411, 9, 13syl2an 596 . . . . . . . . . . . 12 (((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝐴 ∈ β„€)
1514adantll 712 . . . . . . . . . . 11 (((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝐴 ∈ β„€)
16 eqid 2732 . . . . . . . . . . . 12 (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) = (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)
1716fvmpt2 7006 . . . . . . . . . . 11 ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ∧ 𝐴 ∈ β„€) β†’ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘‘) = 𝐴)
1810, 15, 17syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘‘) = 𝐴)
1918eqcomd 2738 . . . . . . . . 9 (((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝐴 = ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘‘))
2019eqeq1d 2734 . . . . . . . 8 (((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ (𝐴 = 0 ↔ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘‘) = 0))
2120ex 413 . . . . . . 7 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ (𝑑 ∈ (β„•0 ↑m (1...𝑁)) β†’ (𝐴 = 0 ↔ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘‘) = 0)))
224, 21ralrimi 3254 . . . . . 6 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))(𝐴 = 0 ↔ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘‘) = 0))
23 rabbi 3462 . . . . . 6 (βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))(𝐴 = 0 ↔ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘‘) = 0) ↔ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 0} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘‘) = 0})
2422, 23sylib 217 . . . . 5 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 0} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘‘) = 0})
25 nfcv 2903 . . . . . 6 Ⅎ𝑑(β„•0 ↑m (1...𝑁))
26 nfcv 2903 . . . . . 6 β„²π‘Ž(β„•0 ↑m (1...𝑁))
27 nfv 1917 . . . . . 6 β„²π‘Ž((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘‘) = 0
28 nffvmpt1 6899 . . . . . . 7 Ⅎ𝑑((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘Ž)
2928nfeq1 2918 . . . . . 6 Ⅎ𝑑((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘Ž) = 0
30 fveqeq2 6897 . . . . . 6 (𝑑 = π‘Ž β†’ (((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘‘) = 0 ↔ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘Ž) = 0))
3125, 26, 27, 29, 30cbvrabw 3467 . . . . 5 {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘‘) = 0} = {π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∣ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘Ž) = 0}
3224, 31eqtrdi 2788 . . . 4 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 0} = {π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∣ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘Ž) = 0})
33 df-rab 3433 . . . 4 {π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∣ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘Ž) = 0} = {π‘Ž ∣ (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘Ž) = 0)}
3432, 33eqtrdi 2788 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 0} = {π‘Ž ∣ (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘Ž) = 0)})
35 elmapi 8839 . . . . . . . . . 10 (𝑏 ∈ (β„•0 ↑m (1...𝑁)) β†’ 𝑏:(1...𝑁)βŸΆβ„•0)
36 ffn 6714 . . . . . . . . . 10 (𝑏:(1...𝑁)βŸΆβ„•0 β†’ 𝑏 Fn (1...𝑁))
37 fnresdm 6666 . . . . . . . . . 10 (𝑏 Fn (1...𝑁) β†’ (𝑏 β†Ύ (1...𝑁)) = 𝑏)
3835, 36, 373syl 18 . . . . . . . . 9 (𝑏 ∈ (β„•0 ↑m (1...𝑁)) β†’ (𝑏 β†Ύ (1...𝑁)) = 𝑏)
3938eqeq2d 2743 . . . . . . . 8 (𝑏 ∈ (β„•0 ↑m (1...𝑁)) β†’ (π‘Ž = (𝑏 β†Ύ (1...𝑁)) ↔ π‘Ž = 𝑏))
40 equcom 2021 . . . . . . . 8 (π‘Ž = 𝑏 ↔ 𝑏 = π‘Ž)
4139, 40bitrdi 286 . . . . . . 7 (𝑏 ∈ (β„•0 ↑m (1...𝑁)) β†’ (π‘Ž = (𝑏 β†Ύ (1...𝑁)) ↔ 𝑏 = π‘Ž))
4241anbi1d 630 . . . . . 6 (𝑏 ∈ (β„•0 ↑m (1...𝑁)) β†’ ((π‘Ž = (𝑏 β†Ύ (1...𝑁)) ∧ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘) = 0) ↔ (𝑏 = π‘Ž ∧ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘) = 0)))
4342rexbiia 3092 . . . . 5 (βˆƒπ‘ ∈ (β„•0 ↑m (1...𝑁))(π‘Ž = (𝑏 β†Ύ (1...𝑁)) ∧ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘) = 0) ↔ βˆƒπ‘ ∈ (β„•0 ↑m (1...𝑁))(𝑏 = π‘Ž ∧ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘) = 0))
44 fveqeq2 6897 . . . . . 6 (𝑏 = π‘Ž β†’ (((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘) = 0 ↔ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘Ž) = 0))
4544ceqsrexbv 3643 . . . . 5 (βˆƒπ‘ ∈ (β„•0 ↑m (1...𝑁))(𝑏 = π‘Ž ∧ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘) = 0) ↔ (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘Ž) = 0))
4643, 45bitr2i 275 . . . 4 ((π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘Ž) = 0) ↔ βˆƒπ‘ ∈ (β„•0 ↑m (1...𝑁))(π‘Ž = (𝑏 β†Ύ (1...𝑁)) ∧ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘) = 0))
4746abbii 2802 . . 3 {π‘Ž ∣ (π‘Ž ∈ (β„•0 ↑m (1...𝑁)) ∧ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘Ž) = 0)} = {π‘Ž ∣ βˆƒπ‘ ∈ (β„•0 ↑m (1...𝑁))(π‘Ž = (𝑏 β†Ύ (1...𝑁)) ∧ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘) = 0)}
4834, 47eqtrdi 2788 . 2 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 0} = {π‘Ž ∣ βˆƒπ‘ ∈ (β„•0 ↑m (1...𝑁))(π‘Ž = (𝑏 β†Ύ (1...𝑁)) ∧ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘) = 0)})
49 simpl 483 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ 𝑁 ∈ β„•0)
50 nn0z 12579 . . . . 5 (𝑁 ∈ β„•0 β†’ 𝑁 ∈ β„€)
51 uzid 12833 . . . . 5 (𝑁 ∈ β„€ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘))
5250, 51syl 17 . . . 4 (𝑁 ∈ β„•0 β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘))
5352adantr 481 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘))
54 simpr 485 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)))
55 eldioph 41481 . . 3 ((𝑁 ∈ β„•0 ∧ 𝑁 ∈ (β„€β‰₯β€˜π‘) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {π‘Ž ∣ βˆƒπ‘ ∈ (β„•0 ↑m (1...𝑁))(π‘Ž = (𝑏 β†Ύ (1...𝑁)) ∧ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘) = 0)} ∈ (Diophβ€˜π‘))
5649, 53, 54, 55syl3anc 1371 . 2 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {π‘Ž ∣ βˆƒπ‘ ∈ (β„•0 ↑m (1...𝑁))(π‘Ž = (𝑏 β†Ύ (1...𝑁)) ∧ ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)β€˜π‘) = 0)} ∈ (Diophβ€˜π‘))
5748, 56eqeltrd 2833 1 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 0} ∈ (Diophβ€˜π‘))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432  Vcvv 3474   βŠ† wss 3947   ↦ cmpt 5230   β†Ύ cres 5677   Fn wfn 6535  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ↑m cmap 8816  0cc0 11106  1c1 11107  β„•0cn0 12468  β„€cz 12554  β„€β‰₯cuz 12818  ...cfz 13480  mzPolycmzp 41445  Diophcdioph 41478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-mzpcl 41446  df-mzp 41447  df-dioph 41479
This theorem is referenced by:  eqrabdioph  41500  0dioph  41501  vdioph  41502  rmydioph  41738  expdioph  41747
  Copyright terms: Public domain W3C validator