Step | Hyp | Ref
| Expression |
1 | | nfv 1921 |
. . . . . . . 8
⊢
Ⅎ𝑡 𝑁 ∈
ℕ0 |
2 | | nfmpt1 5138 |
. . . . . . . . 9
⊢
Ⅎ𝑡(𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴) |
3 | 2 | nfel1 2916 |
. . . . . . . 8
⊢
Ⅎ𝑡(𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)) |
4 | 1, 3 | nfan 1906 |
. . . . . . 7
⊢
Ⅎ𝑡(𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))) |
5 | | zex 12083 |
. . . . . . . . . . . . . 14
⊢ ℤ
∈ V |
6 | | nn0ssz 12096 |
. . . . . . . . . . . . . 14
⊢
ℕ0 ⊆ ℤ |
7 | | mapss 8511 |
. . . . . . . . . . . . . 14
⊢ ((ℤ
∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0
↑m (1...𝑁))
⊆ (ℤ ↑m (1...𝑁))) |
8 | 5, 6, 7 | mp2an 692 |
. . . . . . . . . . . . 13
⊢
(ℕ0 ↑m (1...𝑁)) ⊆ (ℤ ↑m
(1...𝑁)) |
9 | 8 | sseli 3883 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ (ℕ0
↑m (1...𝑁))
→ 𝑡 ∈ (ℤ
↑m (1...𝑁))) |
10 | 9 | adantl 485 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
∧ 𝑡 ∈
(ℕ0 ↑m (1...𝑁))) → 𝑡 ∈ (ℤ ↑m
(1...𝑁))) |
11 | | mzpf 40170 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
→ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴):(ℤ
↑m (1...𝑁))⟶ℤ) |
12 | | mptfcl 40154 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴):(ℤ
↑m (1...𝑁))⟶ℤ → (𝑡 ∈ (ℤ ↑m
(1...𝑁)) → 𝐴 ∈
ℤ)) |
13 | 12 | imp 410 |
. . . . . . . . . . . . 13
⊢ (((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴):(ℤ
↑m (1...𝑁))⟶ℤ ∧ 𝑡 ∈ (ℤ ↑m
(1...𝑁))) → 𝐴 ∈
ℤ) |
14 | 11, 9, 13 | syl2an 599 |
. . . . . . . . . . . 12
⊢ (((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ 𝑡 ∈
(ℕ0 ↑m (1...𝑁))) → 𝐴 ∈ ℤ) |
15 | 14 | adantll 714 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
∧ 𝑡 ∈
(ℕ0 ↑m (1...𝑁))) → 𝐴 ∈ ℤ) |
16 | | eqid 2739 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) = (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) |
17 | 16 | fvmpt2 6798 |
. . . . . . . . . . 11
⊢ ((𝑡 ∈ (ℤ
↑m (1...𝑁))
∧ 𝐴 ∈ ℤ)
→ ((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴)‘𝑡) = 𝐴) |
18 | 10, 15, 17 | syl2anc 587 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
∧ 𝑡 ∈
(ℕ0 ↑m (1...𝑁))) → ((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑡) = 𝐴) |
19 | 18 | eqcomd 2745 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
∧ 𝑡 ∈
(ℕ0 ↑m (1...𝑁))) → 𝐴 = ((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑡)) |
20 | 19 | eqeq1d 2741 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
∧ 𝑡 ∈
(ℕ0 ↑m (1...𝑁))) → (𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑡) = 0)) |
21 | 20 | ex 416 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
→ (𝑡 ∈
(ℕ0 ↑m (1...𝑁)) → (𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑡) = 0))) |
22 | 4, 21 | ralrimi 3129 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
→ ∀𝑡 ∈
(ℕ0 ↑m (1...𝑁))(𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑡) = 0)) |
23 | | rabbi 3287 |
. . . . . 6
⊢
(∀𝑡 ∈
(ℕ0 ↑m (1...𝑁))(𝐴 = 0 ↔ ((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑡) = 0) ↔ {𝑡 ∈ (ℕ0
↑m (1...𝑁))
∣ 𝐴 = 0} = {𝑡 ∈ (ℕ0
↑m (1...𝑁))
∣ ((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴)‘𝑡) = 0}) |
24 | 22, 23 | sylib 221 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
→ {𝑡 ∈
(ℕ0 ↑m (1...𝑁)) ∣ 𝐴 = 0} = {𝑡 ∈ (ℕ0
↑m (1...𝑁))
∣ ((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴)‘𝑡) = 0}) |
25 | | nfcv 2900 |
. . . . . 6
⊢
Ⅎ𝑡(ℕ0 ↑m
(1...𝑁)) |
26 | | nfcv 2900 |
. . . . . 6
⊢
Ⅎ𝑎(ℕ0 ↑m
(1...𝑁)) |
27 | | nfv 1921 |
. . . . . 6
⊢
Ⅎ𝑎((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴)‘𝑡) = 0 |
28 | | nffvmpt1 6697 |
. . . . . . 7
⊢
Ⅎ𝑡((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑎) |
29 | 28 | nfeq1 2915 |
. . . . . 6
⊢
Ⅎ𝑡((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴)‘𝑎) = 0 |
30 | | fveqeq2 6695 |
. . . . . 6
⊢ (𝑡 = 𝑎 → (((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑡) = 0 ↔ ((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑎) = 0)) |
31 | 25, 26, 27, 29, 30 | cbvrabw 3392 |
. . . . 5
⊢ {𝑡 ∈ (ℕ0
↑m (1...𝑁))
∣ ((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴)‘𝑡) = 0} = {𝑎 ∈ (ℕ0
↑m (1...𝑁))
∣ ((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴)‘𝑎) = 0} |
32 | 24, 31 | eqtrdi 2790 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
→ {𝑡 ∈
(ℕ0 ↑m (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∈ (ℕ0
↑m (1...𝑁))
∣ ((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴)‘𝑎) = 0}) |
33 | | df-rab 3063 |
. . . 4
⊢ {𝑎 ∈ (ℕ0
↑m (1...𝑁))
∣ ((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴)‘𝑎) = 0} = {𝑎 ∣ (𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ ((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴)‘𝑎) = 0)} |
34 | 32, 33 | eqtrdi 2790 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
→ {𝑡 ∈
(ℕ0 ↑m (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∣ (𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ ((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴)‘𝑎) = 0)}) |
35 | | elmapi 8471 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (ℕ0
↑m (1...𝑁))
→ 𝑏:(1...𝑁)⟶ℕ0) |
36 | | ffn 6514 |
. . . . . . . . . 10
⊢ (𝑏:(1...𝑁)⟶ℕ0 → 𝑏 Fn (1...𝑁)) |
37 | | fnresdm 6465 |
. . . . . . . . . 10
⊢ (𝑏 Fn (1...𝑁) → (𝑏 ↾ (1...𝑁)) = 𝑏) |
38 | 35, 36, 37 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑏 ∈ (ℕ0
↑m (1...𝑁))
→ (𝑏 ↾
(1...𝑁)) = 𝑏) |
39 | 38 | eqeq2d 2750 |
. . . . . . . 8
⊢ (𝑏 ∈ (ℕ0
↑m (1...𝑁))
→ (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑎 = 𝑏)) |
40 | | equcom 2030 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 ↔ 𝑏 = 𝑎) |
41 | 39, 40 | bitrdi 290 |
. . . . . . 7
⊢ (𝑏 ∈ (ℕ0
↑m (1...𝑁))
→ (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑏 = 𝑎)) |
42 | 41 | anbi1d 633 |
. . . . . 6
⊢ (𝑏 ∈ (ℕ0
↑m (1...𝑁))
→ ((𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ (𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑏) = 0))) |
43 | 42 | rexbiia 3161 |
. . . . 5
⊢
(∃𝑏 ∈
(ℕ0 ↑m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ ∃𝑏 ∈ (ℕ0
↑m (1...𝑁))(𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑏) = 0)) |
44 | | fveqeq2 6695 |
. . . . . 6
⊢ (𝑏 = 𝑎 → (((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑏) = 0 ↔ ((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑎) = 0)) |
45 | 44 | ceqsrexbv 3556 |
. . . . 5
⊢
(∃𝑏 ∈
(ℕ0 ↑m (1...𝑁))(𝑏 = 𝑎 ∧ ((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑏) = 0) ↔ (𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ ((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴)‘𝑎) = 0)) |
46 | 43, 45 | bitr2i 279 |
. . . 4
⊢ ((𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ ((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴)‘𝑎) = 0) ↔ ∃𝑏 ∈ (ℕ0
↑m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑏) = 0)) |
47 | 46 | abbii 2804 |
. . 3
⊢ {𝑎 ∣ (𝑎 ∈ (ℕ0
↑m (1...𝑁))
∧ ((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴)‘𝑎) = 0)} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0
↑m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑏) = 0)} |
48 | 34, 47 | eqtrdi 2790 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
→ {𝑡 ∈
(ℕ0 ↑m (1...𝑁)) ∣ 𝐴 = 0} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0
↑m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑏) = 0)}) |
49 | | simpl 486 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
→ 𝑁 ∈
ℕ0) |
50 | | nn0z 12098 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
51 | | uzid 12351 |
. . . . 5
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
(ℤ≥‘𝑁)) |
52 | 50, 51 | syl 17 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
(ℤ≥‘𝑁)) |
53 | 52 | adantr 484 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
→ 𝑁 ∈
(ℤ≥‘𝑁)) |
54 | | simpr 488 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
→ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))) |
55 | | eldioph 40192 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝑁) ∧ (𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
→ {𝑎 ∣
∃𝑏 ∈
(ℕ0 ↑m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑏) = 0)} ∈ (Dioph‘𝑁)) |
56 | 49, 53, 54, 55 | syl3anc 1372 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
→ {𝑎 ∣
∃𝑏 ∈
(ℕ0 ↑m (1...𝑁))(𝑎 = (𝑏 ↾ (1...𝑁)) ∧ ((𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴)‘𝑏) = 0)} ∈ (Dioph‘𝑁)) |
57 | 48, 56 | eqeltrd 2834 |
1
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)))
→ {𝑡 ∈
(ℕ0 ↑m (1...𝑁)) ∣ 𝐴 = 0} ∈ (Dioph‘𝑁)) |