MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2lem2 Structured version   Visualization version   GIF version

Theorem marypha2lem2 9372
Description: Lemma for marypha2 9375. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypothesis
Ref Expression
marypha2lem.t 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
Assertion
Ref Expression
marypha2lem2 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)

Proof of Theorem marypha2lem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 marypha2lem.t . 2 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
2 sneq 4596 . . . 4 (𝑥 = 𝑧 → {𝑥} = {𝑧})
3 fveq2 6842 . . . 4 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
42, 3xpeq12d 5664 . . 3 (𝑥 = 𝑧 → ({𝑥} × (𝐹𝑥)) = ({𝑧} × (𝐹𝑧)))
54cbviunv 5000 . 2 𝑥𝐴 ({𝑥} × (𝐹𝑥)) = 𝑧𝐴 ({𝑧} × (𝐹𝑧))
6 df-xp 5639 . . . . 5 ({𝑧} × (𝐹𝑧)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹𝑧))}
76a1i 11 . . . 4 (𝑧𝐴 → ({𝑧} × (𝐹𝑧)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹𝑧))})
87iuneq2i 4975 . . 3 𝑧𝐴 ({𝑧} × (𝐹𝑧)) = 𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹𝑧))}
9 iunopab 5516 . . 3 𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹𝑧))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹𝑧))}
10 velsn 4602 . . . . . . . 8 (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧)
11 equcom 2021 . . . . . . . 8 (𝑥 = 𝑧𝑧 = 𝑥)
1210, 11bitri 274 . . . . . . 7 (𝑥 ∈ {𝑧} ↔ 𝑧 = 𝑥)
1312anbi1i 624 . . . . . 6 ((𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹𝑧)) ↔ (𝑧 = 𝑥𝑦 ∈ (𝐹𝑧)))
1413rexbii 3097 . . . . 5 (∃𝑧𝐴 (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹𝑧)) ↔ ∃𝑧𝐴 (𝑧 = 𝑥𝑦 ∈ (𝐹𝑧)))
15 fveq2 6842 . . . . . . 7 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
1615eleq2d 2823 . . . . . 6 (𝑧 = 𝑥 → (𝑦 ∈ (𝐹𝑧) ↔ 𝑦 ∈ (𝐹𝑥)))
1716ceqsrexbv 3606 . . . . 5 (∃𝑧𝐴 (𝑧 = 𝑥𝑦 ∈ (𝐹𝑧)) ↔ (𝑥𝐴𝑦 ∈ (𝐹𝑥)))
1814, 17bitri 274 . . . 4 (∃𝑧𝐴 (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹𝑧)) ↔ (𝑥𝐴𝑦 ∈ (𝐹𝑥)))
1918opabbii 5172 . . 3 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹𝑧))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
208, 9, 193eqtri 2768 . 2 𝑧𝐴 ({𝑧} × (𝐹𝑧)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
211, 5, 203eqtri 2768 1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wcel 2106  wrex 3073  {csn 4586   ciun 4954  {copab 5167   × cxp 5631  cfv 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-12 2171  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-xp 5639  df-iota 6448  df-fv 6504
This theorem is referenced by:  marypha2lem3  9373  marypha2lem4  9374  eulerpartlemgu  32977
  Copyright terms: Public domain W3C validator