MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2lem2 Structured version   Visualization version   GIF version

Theorem marypha2lem2 9453
Description: Lemma for marypha2 9456. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypothesis
Ref Expression
marypha2lem.t 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
Assertion
Ref Expression
marypha2lem2 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)

Proof of Theorem marypha2lem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 marypha2lem.t . 2 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
2 sneq 4616 . . . 4 (𝑥 = 𝑧 → {𝑥} = {𝑧})
3 fveq2 6881 . . . 4 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
42, 3xpeq12d 5690 . . 3 (𝑥 = 𝑧 → ({𝑥} × (𝐹𝑥)) = ({𝑧} × (𝐹𝑧)))
54cbviunv 5021 . 2 𝑥𝐴 ({𝑥} × (𝐹𝑥)) = 𝑧𝐴 ({𝑧} × (𝐹𝑧))
6 df-xp 5665 . . . . 5 ({𝑧} × (𝐹𝑧)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹𝑧))}
76a1i 11 . . . 4 (𝑧𝐴 → ({𝑧} × (𝐹𝑧)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹𝑧))})
87iuneq2i 4994 . . 3 𝑧𝐴 ({𝑧} × (𝐹𝑧)) = 𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹𝑧))}
9 iunopab 5539 . . 3 𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹𝑧))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹𝑧))}
10 velsn 4622 . . . . . . . 8 (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧)
11 equcom 2018 . . . . . . . 8 (𝑥 = 𝑧𝑧 = 𝑥)
1210, 11bitri 275 . . . . . . 7 (𝑥 ∈ {𝑧} ↔ 𝑧 = 𝑥)
1312anbi1i 624 . . . . . 6 ((𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹𝑧)) ↔ (𝑧 = 𝑥𝑦 ∈ (𝐹𝑧)))
1413rexbii 3084 . . . . 5 (∃𝑧𝐴 (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹𝑧)) ↔ ∃𝑧𝐴 (𝑧 = 𝑥𝑦 ∈ (𝐹𝑧)))
15 fveq2 6881 . . . . . . 7 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
1615eleq2d 2821 . . . . . 6 (𝑧 = 𝑥 → (𝑦 ∈ (𝐹𝑧) ↔ 𝑦 ∈ (𝐹𝑥)))
1716ceqsrexbv 3640 . . . . 5 (∃𝑧𝐴 (𝑧 = 𝑥𝑦 ∈ (𝐹𝑧)) ↔ (𝑥𝐴𝑦 ∈ (𝐹𝑥)))
1814, 17bitri 275 . . . 4 (∃𝑧𝐴 (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹𝑧)) ↔ (𝑥𝐴𝑦 ∈ (𝐹𝑥)))
1918opabbii 5191 . . 3 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹𝑧))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
208, 9, 193eqtri 2763 . 2 𝑧𝐴 ({𝑧} × (𝐹𝑧)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
211, 5, 203eqtri 2763 1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wrex 3061  {csn 4606   ciun 4972  {copab 5186   × cxp 5657  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-xp 5665  df-iota 6489  df-fv 6544
This theorem is referenced by:  marypha2lem3  9454  marypha2lem4  9455  eulerpartlemgu  34414
  Copyright terms: Public domain W3C validator