| Step | Hyp | Ref
| Expression |
| 1 | | marypha2lem.t |
. 2
⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) |
| 2 | | sneq 4635 |
. . . 4
⊢ (𝑥 = 𝑧 → {𝑥} = {𝑧}) |
| 3 | | fveq2 6905 |
. . . 4
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
| 4 | 2, 3 | xpeq12d 5715 |
. . 3
⊢ (𝑥 = 𝑧 → ({𝑥} × (𝐹‘𝑥)) = ({𝑧} × (𝐹‘𝑧))) |
| 5 | 4 | cbviunv 5039 |
. 2
⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) = ∪
𝑧 ∈ 𝐴 ({𝑧} × (𝐹‘𝑧)) |
| 6 | | df-xp 5690 |
. . . . 5
⊢ ({𝑧} × (𝐹‘𝑧)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹‘𝑧))} |
| 7 | 6 | a1i 11 |
. . . 4
⊢ (𝑧 ∈ 𝐴 → ({𝑧} × (𝐹‘𝑧)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹‘𝑧))}) |
| 8 | 7 | iuneq2i 5012 |
. . 3
⊢ ∪ 𝑧 ∈ 𝐴 ({𝑧} × (𝐹‘𝑧)) = ∪
𝑧 ∈ 𝐴 {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹‘𝑧))} |
| 9 | | iunopab 5563 |
. . 3
⊢ ∪ 𝑧 ∈ 𝐴 {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹‘𝑧))} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹‘𝑧))} |
| 10 | | velsn 4641 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧) |
| 11 | | equcom 2016 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 ↔ 𝑧 = 𝑥) |
| 12 | 10, 11 | bitri 275 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑧} ↔ 𝑧 = 𝑥) |
| 13 | 12 | anbi1i 624 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹‘𝑧)) ↔ (𝑧 = 𝑥 ∧ 𝑦 ∈ (𝐹‘𝑧))) |
| 14 | 13 | rexbii 3093 |
. . . . 5
⊢
(∃𝑧 ∈
𝐴 (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹‘𝑧)) ↔ ∃𝑧 ∈ 𝐴 (𝑧 = 𝑥 ∧ 𝑦 ∈ (𝐹‘𝑧))) |
| 15 | | fveq2 6905 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) |
| 16 | 15 | eleq2d 2826 |
. . . . . 6
⊢ (𝑧 = 𝑥 → (𝑦 ∈ (𝐹‘𝑧) ↔ 𝑦 ∈ (𝐹‘𝑥))) |
| 17 | 16 | ceqsrexbv 3655 |
. . . . 5
⊢
(∃𝑧 ∈
𝐴 (𝑧 = 𝑥 ∧ 𝑦 ∈ (𝐹‘𝑧)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))) |
| 18 | 14, 17 | bitri 275 |
. . . 4
⊢
(∃𝑧 ∈
𝐴 (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹‘𝑧)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))) |
| 19 | 18 | opabbii 5209 |
. . 3
⊢
{〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹‘𝑧))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 20 | 8, 9, 19 | 3eqtri 2768 |
. 2
⊢ ∪ 𝑧 ∈ 𝐴 ({𝑧} × (𝐹‘𝑧)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 21 | 1, 5, 20 | 3eqtri 2768 |
1
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |