Step | Hyp | Ref
| Expression |
1 | | marypha2lem.t |
. 2
⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) |
2 | | sneq 4568 |
. . . 4
⊢ (𝑥 = 𝑧 → {𝑥} = {𝑧}) |
3 | | fveq2 6756 |
. . . 4
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
4 | 2, 3 | xpeq12d 5611 |
. . 3
⊢ (𝑥 = 𝑧 → ({𝑥} × (𝐹‘𝑥)) = ({𝑧} × (𝐹‘𝑧))) |
5 | 4 | cbviunv 4966 |
. 2
⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) = ∪
𝑧 ∈ 𝐴 ({𝑧} × (𝐹‘𝑧)) |
6 | | df-xp 5586 |
. . . . 5
⊢ ({𝑧} × (𝐹‘𝑧)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹‘𝑧))} |
7 | 6 | a1i 11 |
. . . 4
⊢ (𝑧 ∈ 𝐴 → ({𝑧} × (𝐹‘𝑧)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹‘𝑧))}) |
8 | 7 | iuneq2i 4942 |
. . 3
⊢ ∪ 𝑧 ∈ 𝐴 ({𝑧} × (𝐹‘𝑧)) = ∪
𝑧 ∈ 𝐴 {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹‘𝑧))} |
9 | | iunopab 5465 |
. . 3
⊢ ∪ 𝑧 ∈ 𝐴 {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹‘𝑧))} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹‘𝑧))} |
10 | | velsn 4574 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧) |
11 | | equcom 2022 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 ↔ 𝑧 = 𝑥) |
12 | 10, 11 | bitri 274 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑧} ↔ 𝑧 = 𝑥) |
13 | 12 | anbi1i 623 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹‘𝑧)) ↔ (𝑧 = 𝑥 ∧ 𝑦 ∈ (𝐹‘𝑧))) |
14 | 13 | rexbii 3177 |
. . . . 5
⊢
(∃𝑧 ∈
𝐴 (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹‘𝑧)) ↔ ∃𝑧 ∈ 𝐴 (𝑧 = 𝑥 ∧ 𝑦 ∈ (𝐹‘𝑧))) |
15 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) |
16 | 15 | eleq2d 2824 |
. . . . . 6
⊢ (𝑧 = 𝑥 → (𝑦 ∈ (𝐹‘𝑧) ↔ 𝑦 ∈ (𝐹‘𝑥))) |
17 | 16 | ceqsrexbv 3579 |
. . . . 5
⊢
(∃𝑧 ∈
𝐴 (𝑧 = 𝑥 ∧ 𝑦 ∈ (𝐹‘𝑧)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))) |
18 | 14, 17 | bitri 274 |
. . . 4
⊢
(∃𝑧 ∈
𝐴 (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹‘𝑧)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))) |
19 | 18 | opabbii 5137 |
. . 3
⊢
{〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 (𝑥 ∈ {𝑧} ∧ 𝑦 ∈ (𝐹‘𝑧))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
20 | 8, 9, 19 | 3eqtri 2770 |
. 2
⊢ ∪ 𝑧 ∈ 𝐴 ({𝑧} × (𝐹‘𝑧)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
21 | 1, 5, 20 | 3eqtri 2770 |
1
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |