Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ceqsrexv | Structured version Visualization version GIF version |
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
ceqsrexv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsrexv | ⊢ (𝐴 ∈ 𝐵 → (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3070 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑))) | |
2 | an12 642 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑))) | |
3 | 2 | exbii 1850 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑))) |
4 | 1, 3 | bitr4i 277 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
5 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
6 | ceqsrexv.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 5, 6 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
8 | 7 | ceqsexgv 3584 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
9 | 8 | bianabs 542 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ 𝜓)) |
10 | 4, 9 | bitrid 282 | 1 ⊢ (𝐴 ∈ 𝐵 → (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rex 3070 |
This theorem is referenced by: ceqsrexbv 3586 ceqsrex2v 3587 reuxfrd 3683 f1oiso 7222 creur 11967 creui 11968 deg1ldg 25257 ulm2 25544 iscgra1 27171 reuxfrdf 30839 poimirlem24 35801 eqlkr3 37115 diclspsn 39208 rmxdiophlem 40837 expdiophlem1 40843 expdiophlem2 40844 |
Copyright terms: Public domain | W3C validator |