MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsrexv Structured version   Visualization version   GIF version

Theorem ceqsrexv 3578
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.)
Hypothesis
Ref Expression
ceqsrexv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsrexv (𝐴𝐵 → (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsrexv
StepHypRef Expression
1 df-rex 3069 . . 3 (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ ∃𝑥(𝑥𝐵 ∧ (𝑥 = 𝐴𝜑)))
2 an12 641 . . . 4 ((𝑥 = 𝐴 ∧ (𝑥𝐵𝜑)) ↔ (𝑥𝐵 ∧ (𝑥 = 𝐴𝜑)))
32exbii 1851 . . 3 (∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝐵𝜑)) ↔ ∃𝑥(𝑥𝐵 ∧ (𝑥 = 𝐴𝜑)))
41, 3bitr4i 277 . 2 (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝐵𝜑)))
5 eleq1 2826 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
6 ceqsrexv.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
75, 6anbi12d 630 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
87ceqsexgv 3576 . . 3 (𝐴𝐵 → (∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝐵𝜑)) ↔ (𝐴𝐵𝜓)))
98bianabs 541 . 2 (𝐴𝐵 → (∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝐵𝜑)) ↔ 𝜓))
104, 9syl5bb 282 1 (𝐴𝐵 → (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rex 3069
This theorem is referenced by:  ceqsrexbv  3579  ceqsrex2v  3580  reuxfrd  3678  f1oiso  7202  creur  11897  creui  11898  deg1ldg  25162  ulm2  25449  iscgra1  27075  reuxfrdf  30740  poimirlem24  35728  eqlkr3  37042  diclspsn  39135  rmxdiophlem  40753  expdiophlem1  40759  expdiophlem2  40760
  Copyright terms: Public domain W3C validator