MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsrexv Structured version   Visualization version   GIF version

Theorem ceqsrexv 3634
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.)
Hypothesis
Ref Expression
ceqsrexv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsrexv (𝐴𝐵 → (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsrexv
StepHypRef Expression
1 df-rex 3061 . . 3 (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ ∃𝑥(𝑥𝐵 ∧ (𝑥 = 𝐴𝜑)))
2 an12 645 . . . 4 ((𝑥 = 𝐴 ∧ (𝑥𝐵𝜑)) ↔ (𝑥𝐵 ∧ (𝑥 = 𝐴𝜑)))
32exbii 1848 . . 3 (∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝐵𝜑)) ↔ ∃𝑥(𝑥𝐵 ∧ (𝑥 = 𝐴𝜑)))
41, 3bitr4i 278 . 2 (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝐵𝜑)))
5 eleq1 2822 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
6 ceqsrexv.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
75, 6anbi12d 632 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
87ceqsexgv 3633 . . 3 (𝐴𝐵 → (∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝐵𝜑)) ↔ (𝐴𝐵𝜓)))
98bianabs 541 . 2 (𝐴𝐵 → (∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝐵𝜑)) ↔ 𝜓))
104, 9bitrid 283 1 (𝐴𝐵 → (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wrex 3060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rex 3061
This theorem is referenced by:  ceqsrexbv  3635  ceqsrex2v  3637  reuxfrd  3731  f1oiso  7344  creur  12234  creui  12235  deg1ldg  26049  ulm2  26346  iscgra1  28789  reuxfrdf  32472  poimirlem24  37668  eqlkr3  39119  diclspsn  41213  rmxdiophlem  43039  expdiophlem1  43045  expdiophlem2  43046
  Copyright terms: Public domain W3C validator