Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ceqsrexv | Structured version Visualization version GIF version |
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
ceqsrexv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsrexv | ⊢ (𝐴 ∈ 𝐵 → (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3069 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑))) | |
2 | an12 641 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑))) | |
3 | 2 | exbii 1851 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑))) |
4 | 1, 3 | bitr4i 277 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
5 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
6 | ceqsrexv.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 5, 6 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
8 | 7 | ceqsexgv 3576 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
9 | 8 | bianabs 541 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ 𝜓)) |
10 | 4, 9 | syl5bb 282 | 1 ⊢ (𝐴 ∈ 𝐵 → (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rex 3069 |
This theorem is referenced by: ceqsrexbv 3579 ceqsrex2v 3580 reuxfrd 3678 f1oiso 7202 creur 11897 creui 11898 deg1ldg 25162 ulm2 25449 iscgra1 27075 reuxfrdf 30740 poimirlem24 35728 eqlkr3 37042 diclspsn 39135 rmxdiophlem 40753 expdiophlem1 40759 expdiophlem2 40760 |
Copyright terms: Public domain | W3C validator |