| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsrexv | Structured version Visualization version GIF version | ||
| Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.) |
| Ref | Expression |
|---|---|
| ceqsrexv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsrexv | ⊢ (𝐴 ∈ 𝐵 → (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑))) | |
| 2 | an12 645 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑))) | |
| 3 | 2 | exbii 1848 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑))) |
| 4 | 1, 3 | bitr4i 278 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 5 | eleq1 2816 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 6 | ceqsrexv.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 5, 6 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
| 8 | 7 | ceqsexgv 3609 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
| 9 | 8 | bianabs 541 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ 𝜓)) |
| 10 | 4, 9 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝐵 → (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 |
| This theorem is referenced by: ceqsrexbv 3611 ceqsrex2v 3613 reuxfrd 3708 f1oiso 7288 creur 12122 creui 12123 deg1ldg 25995 ulm2 26292 iscgra1 28755 reuxfrdf 32435 poimirlem24 37624 eqlkr3 39080 diclspsn 41173 rmxdiophlem 42988 expdiophlem1 42994 expdiophlem2 42995 |
| Copyright terms: Public domain | W3C validator |