MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsrexv Structured version   Visualization version   GIF version

Theorem ceqsrexv 3644
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.)
Hypothesis
Ref Expression
ceqsrexv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsrexv (𝐴𝐵 → (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsrexv
StepHypRef Expression
1 df-rex 3072 . . 3 (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ ∃𝑥(𝑥𝐵 ∧ (𝑥 = 𝐴𝜑)))
2 an12 644 . . . 4 ((𝑥 = 𝐴 ∧ (𝑥𝐵𝜑)) ↔ (𝑥𝐵 ∧ (𝑥 = 𝐴𝜑)))
32exbii 1851 . . 3 (∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝐵𝜑)) ↔ ∃𝑥(𝑥𝐵 ∧ (𝑥 = 𝐴𝜑)))
41, 3bitr4i 278 . 2 (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝐵𝜑)))
5 eleq1 2822 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
6 ceqsrexv.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
75, 6anbi12d 632 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
87ceqsexgv 3643 . . 3 (𝐴𝐵 → (∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝐵𝜑)) ↔ (𝐴𝐵𝜓)))
98bianabs 543 . 2 (𝐴𝐵 → (∃𝑥(𝑥 = 𝐴 ∧ (𝑥𝐵𝜑)) ↔ 𝜓))
104, 9bitrid 283 1 (𝐴𝐵 → (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  wrex 3071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rex 3072
This theorem is referenced by:  ceqsrexbv  3645  ceqsrex2v  3647  reuxfrd  3745  f1oiso  7348  creur  12206  creui  12207  deg1ldg  25610  ulm2  25897  iscgra1  28061  reuxfrdf  31731  poimirlem24  36512  eqlkr3  37971  diclspsn  40065  rmxdiophlem  41754  expdiophlem1  41760  expdiophlem2  41761
  Copyright terms: Public domain W3C validator