Proof of Theorem bnj1388
| Step | Hyp | Ref
| Expression |
| 1 | | bnj1388.7 |
. . 3
⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
| 2 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑦𝜓 |
| 3 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑦 𝑥 ∈ 𝐷 |
| 4 | | nfra1 3284 |
. . . 4
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥 |
| 5 | 2, 3, 4 | nf3an 1901 |
. . 3
⊢
Ⅎ𝑦(𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥) |
| 6 | 1, 5 | nfxfr 1853 |
. 2
⊢
Ⅎ𝑦𝜒 |
| 7 | | bnj1152 35012 |
. . . . . 6
⊢ (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)) |
| 8 | 7 | simplbi 497 |
. . . . 5
⊢ (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑦 ∈ 𝐴) |
| 9 | 8 | adantl 481 |
. . . 4
⊢ ((𝜒 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → 𝑦 ∈ 𝐴) |
| 10 | 7 | biimpi 216 |
. . . . . . . . 9
⊢ (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)) |
| 11 | 10 | adantl 481 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)) |
| 12 | 11 | simprd 495 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → 𝑦𝑅𝑥) |
| 13 | 1 | simp3bi 1148 |
. . . . . . . 8
⊢ (𝜒 → ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥) |
| 14 | 13 | adantr 480 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥) |
| 15 | | df-ral 3062 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐷 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦(𝑦 ∈ 𝐷 → ¬ 𝑦𝑅𝑥)) |
| 16 | | con2b 359 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐷 → ¬ 𝑦𝑅𝑥) ↔ (𝑦𝑅𝑥 → ¬ 𝑦 ∈ 𝐷)) |
| 17 | 16 | albii 1819 |
. . . . . . . . 9
⊢
(∀𝑦(𝑦 ∈ 𝐷 → ¬ 𝑦𝑅𝑥) ↔ ∀𝑦(𝑦𝑅𝑥 → ¬ 𝑦 ∈ 𝐷)) |
| 18 | 15, 17 | bitri 275 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐷 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦(𝑦𝑅𝑥 → ¬ 𝑦 ∈ 𝐷)) |
| 19 | | sp 2183 |
. . . . . . . . 9
⊢
(∀𝑦(𝑦𝑅𝑥 → ¬ 𝑦 ∈ 𝐷) → (𝑦𝑅𝑥 → ¬ 𝑦 ∈ 𝐷)) |
| 20 | 19 | impcom 407 |
. . . . . . . 8
⊢ ((𝑦𝑅𝑥 ∧ ∀𝑦(𝑦𝑅𝑥 → ¬ 𝑦 ∈ 𝐷)) → ¬ 𝑦 ∈ 𝐷) |
| 21 | 18, 20 | sylan2b 594 |
. . . . . . 7
⊢ ((𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥) → ¬ 𝑦 ∈ 𝐷) |
| 22 | 12, 14, 21 | syl2anc 584 |
. . . . . 6
⊢ ((𝜒 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → ¬ 𝑦 ∈ 𝐷) |
| 23 | | bnj1388.5 |
. . . . . . . 8
⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
| 24 | 23 | eleq2i 2833 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐷 ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏}) |
| 25 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑦 |
| 26 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐴 |
| 27 | | bnj1388.8 |
. . . . . . . . . . 11
⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
| 28 | | nfsbc1v 3808 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜏 |
| 29 | 27, 28 | nfxfr 1853 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝜏′ |
| 30 | 29 | nfex 2324 |
. . . . . . . . 9
⊢
Ⅎ𝑥∃𝑓𝜏′ |
| 31 | 30 | nfn 1857 |
. . . . . . . 8
⊢
Ⅎ𝑥 ¬
∃𝑓𝜏′ |
| 32 | | sbceq1a 3799 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝜏 ↔ [𝑦 / 𝑥]𝜏)) |
| 33 | 32, 27 | bitr4di 289 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝜏 ↔ 𝜏′)) |
| 34 | 33 | exbidv 1921 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (∃𝑓𝜏 ↔ ∃𝑓𝜏′)) |
| 35 | 34 | notbid 318 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (¬ ∃𝑓𝜏 ↔ ¬ ∃𝑓𝜏′)) |
| 36 | 25, 26, 31, 35 | elrabf 3688 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} ↔ (𝑦 ∈ 𝐴 ∧ ¬ ∃𝑓𝜏′)) |
| 37 | 24, 36 | bitri 275 |
. . . . . 6
⊢ (𝑦 ∈ 𝐷 ↔ (𝑦 ∈ 𝐴 ∧ ¬ ∃𝑓𝜏′)) |
| 38 | 22, 37 | sylnib 328 |
. . . . 5
⊢ ((𝜒 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → ¬ (𝑦 ∈ 𝐴 ∧ ¬ ∃𝑓𝜏′)) |
| 39 | | iman 401 |
. . . . 5
⊢ ((𝑦 ∈ 𝐴 → ∃𝑓𝜏′) ↔ ¬ (𝑦 ∈ 𝐴 ∧ ¬ ∃𝑓𝜏′)) |
| 40 | 38, 39 | sylibr 234 |
. . . 4
⊢ ((𝜒 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → (𝑦 ∈ 𝐴 → ∃𝑓𝜏′)) |
| 41 | 9, 40 | mpd 15 |
. . 3
⊢ ((𝜒 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → ∃𝑓𝜏′) |
| 42 | 41 | ex 412 |
. 2
⊢ (𝜒 → (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → ∃𝑓𝜏′)) |
| 43 | 6, 42 | ralrimi 3257 |
1
⊢ (𝜒 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃𝑓𝜏′) |