MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdginducedm1lem4 Structured version   Visualization version   GIF version

Theorem vtxdginducedm1lem4 27890
Description: Lemma 4 for vtxdginducedm1 27891. (Contributed by AV, 17-Dec-2021.)
Hypotheses
Ref Expression
vtxdginducedm1.v 𝑉 = (Vtx‘𝐺)
vtxdginducedm1.e 𝐸 = (iEdg‘𝐺)
vtxdginducedm1.k 𝐾 = (𝑉 ∖ {𝑁})
vtxdginducedm1.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
vtxdginducedm1.p 𝑃 = (𝐸𝐼)
vtxdginducedm1.s 𝑆 = ⟨𝐾, 𝑃
vtxdginducedm1.j 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
Assertion
Ref Expression
vtxdginducedm1lem4 (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}}) = 0)
Distinct variable groups:   𝑖,𝐸   𝑘,𝐽   𝑖,𝑁,𝑘   𝑘,𝑉   𝑘,𝑊
Allowed substitution hints:   𝑃(𝑖,𝑘)   𝑆(𝑖,𝑘)   𝐸(𝑘)   𝐺(𝑖,𝑘)   𝐼(𝑖,𝑘)   𝐽(𝑖)   𝐾(𝑖,𝑘)   𝑉(𝑖)   𝑊(𝑖)

Proof of Theorem vtxdginducedm1lem4
StepHypRef Expression
1 fveq2 6768 . . . . . . . 8 (𝑖 = 𝑘 → (𝐸𝑖) = (𝐸𝑘))
21eleq2d 2825 . . . . . . 7 (𝑖 = 𝑘 → (𝑁 ∈ (𝐸𝑖) ↔ 𝑁 ∈ (𝐸𝑘)))
3 vtxdginducedm1.j . . . . . . 7 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
42, 3elrab2 3628 . . . . . 6 (𝑘𝐽 ↔ (𝑘 ∈ dom 𝐸𝑁 ∈ (𝐸𝑘)))
5 eldifsn 4725 . . . . . . . 8 (𝑊 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑊𝑉𝑊𝑁))
6 df-ne 2945 . . . . . . . . 9 (𝑊𝑁 ↔ ¬ 𝑊 = 𝑁)
7 eleq2 2828 . . . . . . . . . . . 12 ((𝐸𝑘) = {𝑊} → (𝑁 ∈ (𝐸𝑘) ↔ 𝑁 ∈ {𝑊}))
8 elsni 4583 . . . . . . . . . . . . 13 (𝑁 ∈ {𝑊} → 𝑁 = 𝑊)
98eqcomd 2745 . . . . . . . . . . . 12 (𝑁 ∈ {𝑊} → 𝑊 = 𝑁)
107, 9syl6bi 252 . . . . . . . . . . 11 ((𝐸𝑘) = {𝑊} → (𝑁 ∈ (𝐸𝑘) → 𝑊 = 𝑁))
1110com12 32 . . . . . . . . . 10 (𝑁 ∈ (𝐸𝑘) → ((𝐸𝑘) = {𝑊} → 𝑊 = 𝑁))
1211con3rr3 155 . . . . . . . . 9 𝑊 = 𝑁 → (𝑁 ∈ (𝐸𝑘) → ¬ (𝐸𝑘) = {𝑊}))
136, 12sylbi 216 . . . . . . . 8 (𝑊𝑁 → (𝑁 ∈ (𝐸𝑘) → ¬ (𝐸𝑘) = {𝑊}))
145, 13simplbiim 504 . . . . . . 7 (𝑊 ∈ (𝑉 ∖ {𝑁}) → (𝑁 ∈ (𝐸𝑘) → ¬ (𝐸𝑘) = {𝑊}))
1514com12 32 . . . . . 6 (𝑁 ∈ (𝐸𝑘) → (𝑊 ∈ (𝑉 ∖ {𝑁}) → ¬ (𝐸𝑘) = {𝑊}))
164, 15simplbiim 504 . . . . 5 (𝑘𝐽 → (𝑊 ∈ (𝑉 ∖ {𝑁}) → ¬ (𝐸𝑘) = {𝑊}))
1716impcom 407 . . . 4 ((𝑊 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑘𝐽) → ¬ (𝐸𝑘) = {𝑊})
1817ralrimiva 3109 . . 3 (𝑊 ∈ (𝑉 ∖ {𝑁}) → ∀𝑘𝐽 ¬ (𝐸𝑘) = {𝑊})
19 rabeq0 4323 . . 3 ({𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} = ∅ ↔ ∀𝑘𝐽 ¬ (𝐸𝑘) = {𝑊})
2018, 19sylibr 233 . 2 (𝑊 ∈ (𝑉 ∖ {𝑁}) → {𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} = ∅)
21 vtxdginducedm1.e . . . . . 6 𝐸 = (iEdg‘𝐺)
2221fvexi 6782 . . . . 5 𝐸 ∈ V
2322dmex 7745 . . . 4 dom 𝐸 ∈ V
243, 23rab2ex 5262 . . 3 {𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} ∈ V
25 hasheq0 14059 . . 3 ({𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} ∈ V → ((♯‘{𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}}) = 0 ↔ {𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} = ∅))
2624, 25ax-mp 5 . 2 ((♯‘{𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}}) = 0 ↔ {𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} = ∅)
2720, 26sylibr 233 1 (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}}) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1541  wcel 2109  wne 2944  wnel 3050  wral 3065  {crab 3069  Vcvv 3430  cdif 3888  c0 4261  {csn 4566  cop 4572  dom cdm 5588  cres 5590  cfv 6430  0cc0 10855  chash 14025  Vtxcvtx 27347  iEdgciedg 27348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-hash 14026
This theorem is referenced by:  vtxdginducedm1  27891
  Copyright terms: Public domain W3C validator