MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdginducedm1lem4 Structured version   Visualization version   GIF version

Theorem vtxdginducedm1lem4 29488
Description: Lemma 4 for vtxdginducedm1 29489. (Contributed by AV, 17-Dec-2021.)
Hypotheses
Ref Expression
vtxdginducedm1.v 𝑉 = (Vtx‘𝐺)
vtxdginducedm1.e 𝐸 = (iEdg‘𝐺)
vtxdginducedm1.k 𝐾 = (𝑉 ∖ {𝑁})
vtxdginducedm1.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
vtxdginducedm1.p 𝑃 = (𝐸𝐼)
vtxdginducedm1.s 𝑆 = ⟨𝐾, 𝑃
vtxdginducedm1.j 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
Assertion
Ref Expression
vtxdginducedm1lem4 (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}}) = 0)
Distinct variable groups:   𝑖,𝐸   𝑘,𝐽   𝑖,𝑁,𝑘   𝑘,𝑉   𝑘,𝑊
Allowed substitution hints:   𝑃(𝑖,𝑘)   𝑆(𝑖,𝑘)   𝐸(𝑘)   𝐺(𝑖,𝑘)   𝐼(𝑖,𝑘)   𝐽(𝑖)   𝐾(𝑖,𝑘)   𝑉(𝑖)   𝑊(𝑖)

Proof of Theorem vtxdginducedm1lem4
StepHypRef Expression
1 fveq2 6822 . . . . . . . 8 (𝑖 = 𝑘 → (𝐸𝑖) = (𝐸𝑘))
21eleq2d 2814 . . . . . . 7 (𝑖 = 𝑘 → (𝑁 ∈ (𝐸𝑖) ↔ 𝑁 ∈ (𝐸𝑘)))
3 vtxdginducedm1.j . . . . . . 7 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
42, 3elrab2 3651 . . . . . 6 (𝑘𝐽 ↔ (𝑘 ∈ dom 𝐸𝑁 ∈ (𝐸𝑘)))
5 eldifsn 4737 . . . . . . . 8 (𝑊 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑊𝑉𝑊𝑁))
6 df-ne 2926 . . . . . . . . 9 (𝑊𝑁 ↔ ¬ 𝑊 = 𝑁)
7 eleq2 2817 . . . . . . . . . . . 12 ((𝐸𝑘) = {𝑊} → (𝑁 ∈ (𝐸𝑘) ↔ 𝑁 ∈ {𝑊}))
8 elsni 4594 . . . . . . . . . . . . 13 (𝑁 ∈ {𝑊} → 𝑁 = 𝑊)
98eqcomd 2735 . . . . . . . . . . . 12 (𝑁 ∈ {𝑊} → 𝑊 = 𝑁)
107, 9biimtrdi 253 . . . . . . . . . . 11 ((𝐸𝑘) = {𝑊} → (𝑁 ∈ (𝐸𝑘) → 𝑊 = 𝑁))
1110com12 32 . . . . . . . . . 10 (𝑁 ∈ (𝐸𝑘) → ((𝐸𝑘) = {𝑊} → 𝑊 = 𝑁))
1211con3rr3 155 . . . . . . . . 9 𝑊 = 𝑁 → (𝑁 ∈ (𝐸𝑘) → ¬ (𝐸𝑘) = {𝑊}))
136, 12sylbi 217 . . . . . . . 8 (𝑊𝑁 → (𝑁 ∈ (𝐸𝑘) → ¬ (𝐸𝑘) = {𝑊}))
145, 13simplbiim 504 . . . . . . 7 (𝑊 ∈ (𝑉 ∖ {𝑁}) → (𝑁 ∈ (𝐸𝑘) → ¬ (𝐸𝑘) = {𝑊}))
1514com12 32 . . . . . 6 (𝑁 ∈ (𝐸𝑘) → (𝑊 ∈ (𝑉 ∖ {𝑁}) → ¬ (𝐸𝑘) = {𝑊}))
164, 15simplbiim 504 . . . . 5 (𝑘𝐽 → (𝑊 ∈ (𝑉 ∖ {𝑁}) → ¬ (𝐸𝑘) = {𝑊}))
1716impcom 407 . . . 4 ((𝑊 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑘𝐽) → ¬ (𝐸𝑘) = {𝑊})
1817ralrimiva 3121 . . 3 (𝑊 ∈ (𝑉 ∖ {𝑁}) → ∀𝑘𝐽 ¬ (𝐸𝑘) = {𝑊})
19 rabeq0 4339 . . 3 ({𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} = ∅ ↔ ∀𝑘𝐽 ¬ (𝐸𝑘) = {𝑊})
2018, 19sylibr 234 . 2 (𝑊 ∈ (𝑉 ∖ {𝑁}) → {𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} = ∅)
21 vtxdginducedm1.e . . . . . 6 𝐸 = (iEdg‘𝐺)
2221fvexi 6836 . . . . 5 𝐸 ∈ V
2322dmex 7842 . . . 4 dom 𝐸 ∈ V
243, 23rab2ex 5281 . . 3 {𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} ∈ V
25 hasheq0 14270 . . 3 ({𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} ∈ V → ((♯‘{𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}}) = 0 ↔ {𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} = ∅))
2624, 25ax-mp 5 . 2 ((♯‘{𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}}) = 0 ↔ {𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} = ∅)
2720, 26sylibr 234 1 (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}}) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  {crab 3394  Vcvv 3436  cdif 3900  c0 4284  {csn 4577  cop 4583  dom cdm 5619  cres 5621  cfv 6482  0cc0 11009  chash 14237  Vtxcvtx 28941  iEdgciedg 28942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238
This theorem is referenced by:  vtxdginducedm1  29489
  Copyright terms: Public domain W3C validator