MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdginducedm1lem4 Structured version   Visualization version   GIF version

Theorem vtxdginducedm1lem4 27316
Description: Lemma 4 for vtxdginducedm1 27317. (Contributed by AV, 17-Dec-2021.)
Hypotheses
Ref Expression
vtxdginducedm1.v 𝑉 = (Vtx‘𝐺)
vtxdginducedm1.e 𝐸 = (iEdg‘𝐺)
vtxdginducedm1.k 𝐾 = (𝑉 ∖ {𝑁})
vtxdginducedm1.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
vtxdginducedm1.p 𝑃 = (𝐸𝐼)
vtxdginducedm1.s 𝑆 = ⟨𝐾, 𝑃
vtxdginducedm1.j 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
Assertion
Ref Expression
vtxdginducedm1lem4 (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}}) = 0)
Distinct variable groups:   𝑖,𝐸   𝑘,𝐽   𝑖,𝑁,𝑘   𝑘,𝑉   𝑘,𝑊
Allowed substitution hints:   𝑃(𝑖,𝑘)   𝑆(𝑖,𝑘)   𝐸(𝑘)   𝐺(𝑖,𝑘)   𝐼(𝑖,𝑘)   𝐽(𝑖)   𝐾(𝑖,𝑘)   𝑉(𝑖)   𝑊(𝑖)

Proof of Theorem vtxdginducedm1lem4
StepHypRef Expression
1 fveq2 6663 . . . . . . . 8 (𝑖 = 𝑘 → (𝐸𝑖) = (𝐸𝑘))
21eleq2d 2896 . . . . . . 7 (𝑖 = 𝑘 → (𝑁 ∈ (𝐸𝑖) ↔ 𝑁 ∈ (𝐸𝑘)))
3 vtxdginducedm1.j . . . . . . 7 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
42, 3elrab2 3681 . . . . . 6 (𝑘𝐽 ↔ (𝑘 ∈ dom 𝐸𝑁 ∈ (𝐸𝑘)))
5 eldifsn 4711 . . . . . . . 8 (𝑊 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑊𝑉𝑊𝑁))
6 df-ne 3015 . . . . . . . . 9 (𝑊𝑁 ↔ ¬ 𝑊 = 𝑁)
7 eleq2 2899 . . . . . . . . . . . 12 ((𝐸𝑘) = {𝑊} → (𝑁 ∈ (𝐸𝑘) ↔ 𝑁 ∈ {𝑊}))
8 elsni 4576 . . . . . . . . . . . . 13 (𝑁 ∈ {𝑊} → 𝑁 = 𝑊)
98eqcomd 2825 . . . . . . . . . . . 12 (𝑁 ∈ {𝑊} → 𝑊 = 𝑁)
107, 9syl6bi 255 . . . . . . . . . . 11 ((𝐸𝑘) = {𝑊} → (𝑁 ∈ (𝐸𝑘) → 𝑊 = 𝑁))
1110com12 32 . . . . . . . . . 10 (𝑁 ∈ (𝐸𝑘) → ((𝐸𝑘) = {𝑊} → 𝑊 = 𝑁))
1211con3rr3 158 . . . . . . . . 9 𝑊 = 𝑁 → (𝑁 ∈ (𝐸𝑘) → ¬ (𝐸𝑘) = {𝑊}))
136, 12sylbi 219 . . . . . . . 8 (𝑊𝑁 → (𝑁 ∈ (𝐸𝑘) → ¬ (𝐸𝑘) = {𝑊}))
145, 13simplbiim 507 . . . . . . 7 (𝑊 ∈ (𝑉 ∖ {𝑁}) → (𝑁 ∈ (𝐸𝑘) → ¬ (𝐸𝑘) = {𝑊}))
1514com12 32 . . . . . 6 (𝑁 ∈ (𝐸𝑘) → (𝑊 ∈ (𝑉 ∖ {𝑁}) → ¬ (𝐸𝑘) = {𝑊}))
164, 15simplbiim 507 . . . . 5 (𝑘𝐽 → (𝑊 ∈ (𝑉 ∖ {𝑁}) → ¬ (𝐸𝑘) = {𝑊}))
1716impcom 410 . . . 4 ((𝑊 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑘𝐽) → ¬ (𝐸𝑘) = {𝑊})
1817ralrimiva 3180 . . 3 (𝑊 ∈ (𝑉 ∖ {𝑁}) → ∀𝑘𝐽 ¬ (𝐸𝑘) = {𝑊})
19 rabeq0 4336 . . 3 ({𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} = ∅ ↔ ∀𝑘𝐽 ¬ (𝐸𝑘) = {𝑊})
2018, 19sylibr 236 . 2 (𝑊 ∈ (𝑉 ∖ {𝑁}) → {𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} = ∅)
21 vtxdginducedm1.e . . . . . 6 𝐸 = (iEdg‘𝐺)
2221fvexi 6677 . . . . 5 𝐸 ∈ V
2322dmex 7608 . . . 4 dom 𝐸 ∈ V
243, 23rab2ex 5229 . . 3 {𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} ∈ V
25 hasheq0 13716 . . 3 ({𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} ∈ V → ((♯‘{𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}}) = 0 ↔ {𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} = ∅))
2624, 25ax-mp 5 . 2 ((♯‘{𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}}) = 0 ↔ {𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} = ∅)
2720, 26sylibr 236 1 (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}}) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208   = wceq 1530  wcel 2107  wne 3014  wnel 3121  wral 3136  {crab 3140  Vcvv 3493  cdif 3931  c0 4289  {csn 4559  cop 4565  dom cdm 5548  cres 5550  cfv 6348  0cc0 10529  chash 13682  Vtxcvtx 26773  iEdgciedg 26774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-hash 13683
This theorem is referenced by:  vtxdginducedm1  27317
  Copyright terms: Public domain W3C validator