| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxdginducedm1lem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for vtxdginducedm1 29471. (Contributed by AV, 17-Dec-2021.) |
| Ref | Expression |
|---|---|
| vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
| vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
| vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
| vtxdginducedm1.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
| vtxdginducedm1.j | ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
| Ref | Expression |
|---|---|
| vtxdginducedm1lem4 | ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (𝐸‘𝑖) = (𝐸‘𝑘)) | |
| 2 | 1 | eleq2d 2814 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (𝑁 ∈ (𝐸‘𝑖) ↔ 𝑁 ∈ (𝐸‘𝑘))) |
| 3 | vtxdginducedm1.j | . . . . . . 7 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} | |
| 4 | 2, 3 | elrab2 3662 | . . . . . 6 ⊢ (𝑘 ∈ 𝐽 ↔ (𝑘 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑘))) |
| 5 | eldifsn 4750 | . . . . . . . 8 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑊 ∈ 𝑉 ∧ 𝑊 ≠ 𝑁)) | |
| 6 | df-ne 2926 | . . . . . . . . 9 ⊢ (𝑊 ≠ 𝑁 ↔ ¬ 𝑊 = 𝑁) | |
| 7 | eleq2 2817 | . . . . . . . . . . . 12 ⊢ ((𝐸‘𝑘) = {𝑊} → (𝑁 ∈ (𝐸‘𝑘) ↔ 𝑁 ∈ {𝑊})) | |
| 8 | elsni 4606 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ {𝑊} → 𝑁 = 𝑊) | |
| 9 | 8 | eqcomd 2735 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ {𝑊} → 𝑊 = 𝑁) |
| 10 | 7, 9 | biimtrdi 253 | . . . . . . . . . . 11 ⊢ ((𝐸‘𝑘) = {𝑊} → (𝑁 ∈ (𝐸‘𝑘) → 𝑊 = 𝑁)) |
| 11 | 10 | com12 32 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (𝐸‘𝑘) → ((𝐸‘𝑘) = {𝑊} → 𝑊 = 𝑁)) |
| 12 | 11 | con3rr3 155 | . . . . . . . . 9 ⊢ (¬ 𝑊 = 𝑁 → (𝑁 ∈ (𝐸‘𝑘) → ¬ (𝐸‘𝑘) = {𝑊})) |
| 13 | 6, 12 | sylbi 217 | . . . . . . . 8 ⊢ (𝑊 ≠ 𝑁 → (𝑁 ∈ (𝐸‘𝑘) → ¬ (𝐸‘𝑘) = {𝑊})) |
| 14 | 5, 13 | simplbiim 504 | . . . . . . 7 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → (𝑁 ∈ (𝐸‘𝑘) → ¬ (𝐸‘𝑘) = {𝑊})) |
| 15 | 14 | com12 32 | . . . . . 6 ⊢ (𝑁 ∈ (𝐸‘𝑘) → (𝑊 ∈ (𝑉 ∖ {𝑁}) → ¬ (𝐸‘𝑘) = {𝑊})) |
| 16 | 4, 15 | simplbiim 504 | . . . . 5 ⊢ (𝑘 ∈ 𝐽 → (𝑊 ∈ (𝑉 ∖ {𝑁}) → ¬ (𝐸‘𝑘) = {𝑊})) |
| 17 | 16 | impcom 407 | . . . 4 ⊢ ((𝑊 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑘 ∈ 𝐽) → ¬ (𝐸‘𝑘) = {𝑊}) |
| 18 | 17 | ralrimiva 3125 | . . 3 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → ∀𝑘 ∈ 𝐽 ¬ (𝐸‘𝑘) = {𝑊}) |
| 19 | rabeq0 4351 | . . 3 ⊢ ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅ ↔ ∀𝑘 ∈ 𝐽 ¬ (𝐸‘𝑘) = {𝑊}) | |
| 20 | 18, 19 | sylibr 234 | . 2 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅) |
| 21 | vtxdginducedm1.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 22 | 21 | fvexi 6872 | . . . . 5 ⊢ 𝐸 ∈ V |
| 23 | 22 | dmex 7885 | . . . 4 ⊢ dom 𝐸 ∈ V |
| 24 | 3, 23 | rab2ex 5297 | . . 3 ⊢ {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} ∈ V |
| 25 | hasheq0 14328 | . . 3 ⊢ ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} ∈ V → ((♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0 ↔ {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅)) | |
| 26 | 24, 25 | ax-mp 5 | . 2 ⊢ ((♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0 ↔ {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅) |
| 27 | 20, 26 | sylibr 234 | 1 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∉ wnel 3029 ∀wral 3044 {crab 3405 Vcvv 3447 ∖ cdif 3911 ∅c0 4296 {csn 4589 〈cop 4595 dom cdm 5638 ↾ cres 5640 ‘cfv 6511 0cc0 11068 ♯chash 14295 Vtxcvtx 28923 iEdgciedg 28924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 |
| This theorem is referenced by: vtxdginducedm1 29471 |
| Copyright terms: Public domain | W3C validator |