Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtxdginducedm1lem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for vtxdginducedm1 28199. (Contributed by AV, 17-Dec-2021.) |
Ref | Expression |
---|---|
vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
vtxdginducedm1.s | ⊢ 𝑆 = ⟨𝐾, 𝑃⟩ |
vtxdginducedm1.j | ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
Ref | Expression |
---|---|
vtxdginducedm1lem4 | ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6825 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (𝐸‘𝑖) = (𝐸‘𝑘)) | |
2 | 1 | eleq2d 2822 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (𝑁 ∈ (𝐸‘𝑖) ↔ 𝑁 ∈ (𝐸‘𝑘))) |
3 | vtxdginducedm1.j | . . . . . . 7 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} | |
4 | 2, 3 | elrab2 3637 | . . . . . 6 ⊢ (𝑘 ∈ 𝐽 ↔ (𝑘 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑘))) |
5 | eldifsn 4734 | . . . . . . . 8 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑊 ∈ 𝑉 ∧ 𝑊 ≠ 𝑁)) | |
6 | df-ne 2941 | . . . . . . . . 9 ⊢ (𝑊 ≠ 𝑁 ↔ ¬ 𝑊 = 𝑁) | |
7 | eleq2 2825 | . . . . . . . . . . . 12 ⊢ ((𝐸‘𝑘) = {𝑊} → (𝑁 ∈ (𝐸‘𝑘) ↔ 𝑁 ∈ {𝑊})) | |
8 | elsni 4590 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ {𝑊} → 𝑁 = 𝑊) | |
9 | 8 | eqcomd 2742 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ {𝑊} → 𝑊 = 𝑁) |
10 | 7, 9 | syl6bi 252 | . . . . . . . . . . 11 ⊢ ((𝐸‘𝑘) = {𝑊} → (𝑁 ∈ (𝐸‘𝑘) → 𝑊 = 𝑁)) |
11 | 10 | com12 32 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (𝐸‘𝑘) → ((𝐸‘𝑘) = {𝑊} → 𝑊 = 𝑁)) |
12 | 11 | con3rr3 155 | . . . . . . . . 9 ⊢ (¬ 𝑊 = 𝑁 → (𝑁 ∈ (𝐸‘𝑘) → ¬ (𝐸‘𝑘) = {𝑊})) |
13 | 6, 12 | sylbi 216 | . . . . . . . 8 ⊢ (𝑊 ≠ 𝑁 → (𝑁 ∈ (𝐸‘𝑘) → ¬ (𝐸‘𝑘) = {𝑊})) |
14 | 5, 13 | simplbiim 505 | . . . . . . 7 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → (𝑁 ∈ (𝐸‘𝑘) → ¬ (𝐸‘𝑘) = {𝑊})) |
15 | 14 | com12 32 | . . . . . 6 ⊢ (𝑁 ∈ (𝐸‘𝑘) → (𝑊 ∈ (𝑉 ∖ {𝑁}) → ¬ (𝐸‘𝑘) = {𝑊})) |
16 | 4, 15 | simplbiim 505 | . . . . 5 ⊢ (𝑘 ∈ 𝐽 → (𝑊 ∈ (𝑉 ∖ {𝑁}) → ¬ (𝐸‘𝑘) = {𝑊})) |
17 | 16 | impcom 408 | . . . 4 ⊢ ((𝑊 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑘 ∈ 𝐽) → ¬ (𝐸‘𝑘) = {𝑊}) |
18 | 17 | ralrimiva 3139 | . . 3 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → ∀𝑘 ∈ 𝐽 ¬ (𝐸‘𝑘) = {𝑊}) |
19 | rabeq0 4331 | . . 3 ⊢ ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅ ↔ ∀𝑘 ∈ 𝐽 ¬ (𝐸‘𝑘) = {𝑊}) | |
20 | 18, 19 | sylibr 233 | . 2 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅) |
21 | vtxdginducedm1.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
22 | 21 | fvexi 6839 | . . . . 5 ⊢ 𝐸 ∈ V |
23 | 22 | dmex 7826 | . . . 4 ⊢ dom 𝐸 ∈ V |
24 | 3, 23 | rab2ex 5279 | . . 3 ⊢ {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} ∈ V |
25 | hasheq0 14178 | . . 3 ⊢ ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} ∈ V → ((♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0 ↔ {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅)) | |
26 | 24, 25 | ax-mp 5 | . 2 ⊢ ((♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0 ↔ {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅) |
27 | 20, 26 | sylibr 233 | 1 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∉ wnel 3046 ∀wral 3061 {crab 3403 Vcvv 3441 ∖ cdif 3895 ∅c0 4269 {csn 4573 ⟨cop 4579 dom cdm 5620 ↾ cres 5622 ‘cfv 6479 0cc0 10972 ♯chash 14145 Vtxcvtx 27655 iEdgciedg 27656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-hash 14146 |
This theorem is referenced by: vtxdginducedm1 28199 |
Copyright terms: Public domain | W3C validator |