Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtxdginducedm1lem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for vtxdginducedm1 27437. (Contributed by AV, 17-Dec-2021.) |
Ref | Expression |
---|---|
vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
vtxdginducedm1.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
vtxdginducedm1.j | ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
Ref | Expression |
---|---|
vtxdginducedm1lem4 | ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6662 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (𝐸‘𝑖) = (𝐸‘𝑘)) | |
2 | 1 | eleq2d 2837 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (𝑁 ∈ (𝐸‘𝑖) ↔ 𝑁 ∈ (𝐸‘𝑘))) |
3 | vtxdginducedm1.j | . . . . . . 7 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} | |
4 | 2, 3 | elrab2 3607 | . . . . . 6 ⊢ (𝑘 ∈ 𝐽 ↔ (𝑘 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑘))) |
5 | eldifsn 4680 | . . . . . . . 8 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑊 ∈ 𝑉 ∧ 𝑊 ≠ 𝑁)) | |
6 | df-ne 2952 | . . . . . . . . 9 ⊢ (𝑊 ≠ 𝑁 ↔ ¬ 𝑊 = 𝑁) | |
7 | eleq2 2840 | . . . . . . . . . . . 12 ⊢ ((𝐸‘𝑘) = {𝑊} → (𝑁 ∈ (𝐸‘𝑘) ↔ 𝑁 ∈ {𝑊})) | |
8 | elsni 4542 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ {𝑊} → 𝑁 = 𝑊) | |
9 | 8 | eqcomd 2764 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ {𝑊} → 𝑊 = 𝑁) |
10 | 7, 9 | syl6bi 256 | . . . . . . . . . . 11 ⊢ ((𝐸‘𝑘) = {𝑊} → (𝑁 ∈ (𝐸‘𝑘) → 𝑊 = 𝑁)) |
11 | 10 | com12 32 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (𝐸‘𝑘) → ((𝐸‘𝑘) = {𝑊} → 𝑊 = 𝑁)) |
12 | 11 | con3rr3 158 | . . . . . . . . 9 ⊢ (¬ 𝑊 = 𝑁 → (𝑁 ∈ (𝐸‘𝑘) → ¬ (𝐸‘𝑘) = {𝑊})) |
13 | 6, 12 | sylbi 220 | . . . . . . . 8 ⊢ (𝑊 ≠ 𝑁 → (𝑁 ∈ (𝐸‘𝑘) → ¬ (𝐸‘𝑘) = {𝑊})) |
14 | 5, 13 | simplbiim 508 | . . . . . . 7 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → (𝑁 ∈ (𝐸‘𝑘) → ¬ (𝐸‘𝑘) = {𝑊})) |
15 | 14 | com12 32 | . . . . . 6 ⊢ (𝑁 ∈ (𝐸‘𝑘) → (𝑊 ∈ (𝑉 ∖ {𝑁}) → ¬ (𝐸‘𝑘) = {𝑊})) |
16 | 4, 15 | simplbiim 508 | . . . . 5 ⊢ (𝑘 ∈ 𝐽 → (𝑊 ∈ (𝑉 ∖ {𝑁}) → ¬ (𝐸‘𝑘) = {𝑊})) |
17 | 16 | impcom 411 | . . . 4 ⊢ ((𝑊 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑘 ∈ 𝐽) → ¬ (𝐸‘𝑘) = {𝑊}) |
18 | 17 | ralrimiva 3113 | . . 3 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → ∀𝑘 ∈ 𝐽 ¬ (𝐸‘𝑘) = {𝑊}) |
19 | rabeq0 4283 | . . 3 ⊢ ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅ ↔ ∀𝑘 ∈ 𝐽 ¬ (𝐸‘𝑘) = {𝑊}) | |
20 | 18, 19 | sylibr 237 | . 2 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅) |
21 | vtxdginducedm1.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
22 | 21 | fvexi 6676 | . . . . 5 ⊢ 𝐸 ∈ V |
23 | 22 | dmex 7626 | . . . 4 ⊢ dom 𝐸 ∈ V |
24 | 3, 23 | rab2ex 5208 | . . 3 ⊢ {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} ∈ V |
25 | hasheq0 13779 | . . 3 ⊢ ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} ∈ V → ((♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0 ↔ {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅)) | |
26 | 24, 25 | ax-mp 5 | . 2 ⊢ ((♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0 ↔ {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅) |
27 | 20, 26 | sylibr 237 | 1 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∉ wnel 3055 ∀wral 3070 {crab 3074 Vcvv 3409 ∖ cdif 3857 ∅c0 4227 {csn 4525 〈cop 4531 dom cdm 5527 ↾ cres 5529 ‘cfv 6339 0cc0 10580 ♯chash 13745 Vtxcvtx 26893 iEdgciedg 26894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-card 9406 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-n0 11940 df-z 12026 df-uz 12288 df-fz 12945 df-hash 13746 |
This theorem is referenced by: vtxdginducedm1 27437 |
Copyright terms: Public domain | W3C validator |