![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdginducedm1lem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for vtxdginducedm1 29576. (Contributed by AV, 17-Dec-2021.) |
Ref | Expression |
---|---|
vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
vtxdginducedm1.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
vtxdginducedm1.j | ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
Ref | Expression |
---|---|
vtxdginducedm1lem4 | ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (𝐸‘𝑖) = (𝐸‘𝑘)) | |
2 | 1 | eleq2d 2825 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (𝑁 ∈ (𝐸‘𝑖) ↔ 𝑁 ∈ (𝐸‘𝑘))) |
3 | vtxdginducedm1.j | . . . . . . 7 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} | |
4 | 2, 3 | elrab2 3698 | . . . . . 6 ⊢ (𝑘 ∈ 𝐽 ↔ (𝑘 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑘))) |
5 | eldifsn 4791 | . . . . . . . 8 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑊 ∈ 𝑉 ∧ 𝑊 ≠ 𝑁)) | |
6 | df-ne 2939 | . . . . . . . . 9 ⊢ (𝑊 ≠ 𝑁 ↔ ¬ 𝑊 = 𝑁) | |
7 | eleq2 2828 | . . . . . . . . . . . 12 ⊢ ((𝐸‘𝑘) = {𝑊} → (𝑁 ∈ (𝐸‘𝑘) ↔ 𝑁 ∈ {𝑊})) | |
8 | elsni 4648 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ {𝑊} → 𝑁 = 𝑊) | |
9 | 8 | eqcomd 2741 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ {𝑊} → 𝑊 = 𝑁) |
10 | 7, 9 | biimtrdi 253 | . . . . . . . . . . 11 ⊢ ((𝐸‘𝑘) = {𝑊} → (𝑁 ∈ (𝐸‘𝑘) → 𝑊 = 𝑁)) |
11 | 10 | com12 32 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (𝐸‘𝑘) → ((𝐸‘𝑘) = {𝑊} → 𝑊 = 𝑁)) |
12 | 11 | con3rr3 155 | . . . . . . . . 9 ⊢ (¬ 𝑊 = 𝑁 → (𝑁 ∈ (𝐸‘𝑘) → ¬ (𝐸‘𝑘) = {𝑊})) |
13 | 6, 12 | sylbi 217 | . . . . . . . 8 ⊢ (𝑊 ≠ 𝑁 → (𝑁 ∈ (𝐸‘𝑘) → ¬ (𝐸‘𝑘) = {𝑊})) |
14 | 5, 13 | simplbiim 504 | . . . . . . 7 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → (𝑁 ∈ (𝐸‘𝑘) → ¬ (𝐸‘𝑘) = {𝑊})) |
15 | 14 | com12 32 | . . . . . 6 ⊢ (𝑁 ∈ (𝐸‘𝑘) → (𝑊 ∈ (𝑉 ∖ {𝑁}) → ¬ (𝐸‘𝑘) = {𝑊})) |
16 | 4, 15 | simplbiim 504 | . . . . 5 ⊢ (𝑘 ∈ 𝐽 → (𝑊 ∈ (𝑉 ∖ {𝑁}) → ¬ (𝐸‘𝑘) = {𝑊})) |
17 | 16 | impcom 407 | . . . 4 ⊢ ((𝑊 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑘 ∈ 𝐽) → ¬ (𝐸‘𝑘) = {𝑊}) |
18 | 17 | ralrimiva 3144 | . . 3 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → ∀𝑘 ∈ 𝐽 ¬ (𝐸‘𝑘) = {𝑊}) |
19 | rabeq0 4394 | . . 3 ⊢ ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅ ↔ ∀𝑘 ∈ 𝐽 ¬ (𝐸‘𝑘) = {𝑊}) | |
20 | 18, 19 | sylibr 234 | . 2 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅) |
21 | vtxdginducedm1.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
22 | 21 | fvexi 6921 | . . . . 5 ⊢ 𝐸 ∈ V |
23 | 22 | dmex 7932 | . . . 4 ⊢ dom 𝐸 ∈ V |
24 | 3, 23 | rab2ex 5348 | . . 3 ⊢ {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} ∈ V |
25 | hasheq0 14399 | . . 3 ⊢ ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} ∈ V → ((♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0 ↔ {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅)) | |
26 | 24, 25 | ax-mp 5 | . 2 ⊢ ((♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0 ↔ {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅) |
27 | 20, 26 | sylibr 234 | 1 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∉ wnel 3044 ∀wral 3059 {crab 3433 Vcvv 3478 ∖ cdif 3960 ∅c0 4339 {csn 4631 〈cop 4637 dom cdm 5689 ↾ cres 5691 ‘cfv 6563 0cc0 11153 ♯chash 14366 Vtxcvtx 29028 iEdgciedg 29029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-hash 14367 |
This theorem is referenced by: vtxdginducedm1 29576 |
Copyright terms: Public domain | W3C validator |