MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3sndisj Structured version   Visualization version   GIF version

Theorem s3sndisj 14914
Description: The singletons consisting of length 3 strings which have distinct third symbols are disjunct. (Contributed by AV, 17-May-2021.)
Assertion
Ref Expression
s3sndisj ((𝐴𝑋𝐵𝑌) → Disj 𝑐𝑍 {⟨“𝐴𝐵𝑐”⟩})
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝑋,𝑐   𝑌,𝑐   𝑍,𝑐

Proof of Theorem s3sndisj
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 orc 866 . . . . 5 (𝑐 = 𝑑 → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
21a1d 25 . . . 4 (𝑐 = 𝑑 → (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)))
3 s3cli 14832 . . . . . . . . . . . 12 ⟨“𝐴𝐵𝑐”⟩ ∈ Word V
4 elex 3493 . . . . . . . . . . . . . . 15 (𝐴𝑋𝐴 ∈ V)
5 elex 3493 . . . . . . . . . . . . . . 15 (𝐵𝑌𝐵 ∈ V)
64, 5anim12i 614 . . . . . . . . . . . . . 14 ((𝐴𝑋𝐵𝑌) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
7 elex 3493 . . . . . . . . . . . . . . 15 (𝑑𝑍𝑑 ∈ V)
87adantl 483 . . . . . . . . . . . . . 14 ((𝑐𝑍𝑑𝑍) → 𝑑 ∈ V)
96, 8anim12i 614 . . . . . . . . . . . . 13 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑑 ∈ V))
10 df-3an 1090 . . . . . . . . . . . . 13 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑑 ∈ V) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑑 ∈ V))
119, 10sylibr 233 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑑 ∈ V))
12 eqwrds3 14912 . . . . . . . . . . . 12 ((⟨“𝐴𝐵𝑐”⟩ ∈ Word V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑑 ∈ V)) → (⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩ ↔ ((♯‘⟨“𝐴𝐵𝑐”⟩) = 3 ∧ ((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑))))
133, 11, 12sylancr 588 . . . . . . . . . . 11 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩ ↔ ((♯‘⟨“𝐴𝐵𝑐”⟩) = 3 ∧ ((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑))))
14 s3fv2 14844 . . . . . . . . . . . . . 14 (𝑐 ∈ V → (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑐)
1514elv 3481 . . . . . . . . . . . . 13 (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑐
16 simp3 1139 . . . . . . . . . . . . 13 (((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑) → (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑)
1715, 16eqtr3id 2787 . . . . . . . . . . . 12 (((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑) → 𝑐 = 𝑑)
1817adantl 483 . . . . . . . . . . 11 (((♯‘⟨“𝐴𝐵𝑐”⟩) = 3 ∧ ((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑)) → 𝑐 = 𝑑)
1913, 18syl6bi 253 . . . . . . . . . 10 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩ → 𝑐 = 𝑑))
2019con3rr3 155 . . . . . . . . 9 𝑐 = 𝑑 → (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → ¬ ⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩))
2120imp 408 . . . . . . . 8 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → ¬ ⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩)
2221neqned 2948 . . . . . . 7 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → ⟨“𝐴𝐵𝑐”⟩ ≠ ⟨“𝐴𝐵𝑑”⟩)
23 disjsn2 4717 . . . . . . 7 (⟨“𝐴𝐵𝑐”⟩ ≠ ⟨“𝐴𝐵𝑑”⟩ → ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)
2422, 23syl 17 . . . . . 6 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)
2524olcd 873 . . . . 5 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
2625ex 414 . . . 4 𝑐 = 𝑑 → (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)))
272, 26pm2.61i 182 . . 3 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
2827ralrimivva 3201 . 2 ((𝐴𝑋𝐵𝑌) → ∀𝑐𝑍𝑑𝑍 (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
29 eqidd 2734 . . . . 5 (𝑐 = 𝑑𝐴 = 𝐴)
30 eqidd 2734 . . . . 5 (𝑐 = 𝑑𝐵 = 𝐵)
31 id 22 . . . . 5 (𝑐 = 𝑑𝑐 = 𝑑)
3229, 30, 31s3eqd 14815 . . . 4 (𝑐 = 𝑑 → ⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩)
3332sneqd 4641 . . 3 (𝑐 = 𝑑 → {⟨“𝐴𝐵𝑐”⟩} = {⟨“𝐴𝐵𝑑”⟩})
3433disjor 5129 . 2 (Disj 𝑐𝑍 {⟨“𝐴𝐵𝑐”⟩} ↔ ∀𝑐𝑍𝑑𝑍 (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
3528, 34sylibr 233 1 ((𝐴𝑋𝐵𝑌) → Disj 𝑐𝑍 {⟨“𝐴𝐵𝑐”⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  Vcvv 3475  cin 3948  c0 4323  {csn 4629  Disj wdisj 5114  cfv 6544  0cc0 11110  1c1 11111  2c2 12267  3c3 12268  chash 14290  Word cword 14464  ⟨“cs3 14793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-concat 14521  df-s1 14546  df-s2 14799  df-s3 14800
This theorem is referenced by:  fusgreghash2wspv  29588
  Copyright terms: Public domain W3C validator