MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3sndisj Structured version   Visualization version   GIF version

Theorem s3sndisj 14950
Description: The singletons consisting of length 3 strings which have distinct third symbols are disjunct. (Contributed by AV, 17-May-2021.)
Assertion
Ref Expression
s3sndisj ((𝐴𝑋𝐵𝑌) → Disj 𝑐𝑍 {⟨“𝐴𝐵𝑐”⟩})
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝑋,𝑐   𝑌,𝑐   𝑍,𝑐

Proof of Theorem s3sndisj
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 orc 865 . . . . 5 (𝑐 = 𝑑 → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
21a1d 25 . . . 4 (𝑐 = 𝑑 → (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)))
3 s3cli 14868 . . . . . . . . . . . 12 ⟨“𝐴𝐵𝑐”⟩ ∈ Word V
4 elex 3480 . . . . . . . . . . . . . . 15 (𝐴𝑋𝐴 ∈ V)
5 elex 3480 . . . . . . . . . . . . . . 15 (𝐵𝑌𝐵 ∈ V)
64, 5anim12i 611 . . . . . . . . . . . . . 14 ((𝐴𝑋𝐵𝑌) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
7 elex 3480 . . . . . . . . . . . . . . 15 (𝑑𝑍𝑑 ∈ V)
87adantl 480 . . . . . . . . . . . . . 14 ((𝑐𝑍𝑑𝑍) → 𝑑 ∈ V)
96, 8anim12i 611 . . . . . . . . . . . . 13 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑑 ∈ V))
10 df-3an 1086 . . . . . . . . . . . . 13 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑑 ∈ V) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑑 ∈ V))
119, 10sylibr 233 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑑 ∈ V))
12 eqwrds3 14948 . . . . . . . . . . . 12 ((⟨“𝐴𝐵𝑐”⟩ ∈ Word V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑑 ∈ V)) → (⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩ ↔ ((♯‘⟨“𝐴𝐵𝑐”⟩) = 3 ∧ ((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑))))
133, 11, 12sylancr 585 . . . . . . . . . . 11 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩ ↔ ((♯‘⟨“𝐴𝐵𝑐”⟩) = 3 ∧ ((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑))))
14 s3fv2 14880 . . . . . . . . . . . . . 14 (𝑐 ∈ V → (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑐)
1514elv 3467 . . . . . . . . . . . . 13 (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑐
16 simp3 1135 . . . . . . . . . . . . 13 (((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑) → (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑)
1715, 16eqtr3id 2779 . . . . . . . . . . . 12 (((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑) → 𝑐 = 𝑑)
1817adantl 480 . . . . . . . . . . 11 (((♯‘⟨“𝐴𝐵𝑐”⟩) = 3 ∧ ((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑)) → 𝑐 = 𝑑)
1913, 18biimtrdi 252 . . . . . . . . . 10 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩ → 𝑐 = 𝑑))
2019con3rr3 155 . . . . . . . . 9 𝑐 = 𝑑 → (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → ¬ ⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩))
2120imp 405 . . . . . . . 8 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → ¬ ⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩)
2221neqned 2936 . . . . . . 7 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → ⟨“𝐴𝐵𝑐”⟩ ≠ ⟨“𝐴𝐵𝑑”⟩)
23 disjsn2 4718 . . . . . . 7 (⟨“𝐴𝐵𝑐”⟩ ≠ ⟨“𝐴𝐵𝑑”⟩ → ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)
2422, 23syl 17 . . . . . 6 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)
2524olcd 872 . . . . 5 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
2625ex 411 . . . 4 𝑐 = 𝑑 → (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)))
272, 26pm2.61i 182 . . 3 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
2827ralrimivva 3190 . 2 ((𝐴𝑋𝐵𝑌) → ∀𝑐𝑍𝑑𝑍 (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
29 eqidd 2726 . . . . 5 (𝑐 = 𝑑𝐴 = 𝐴)
30 eqidd 2726 . . . . 5 (𝑐 = 𝑑𝐵 = 𝐵)
31 id 22 . . . . 5 (𝑐 = 𝑑𝑐 = 𝑑)
3229, 30, 31s3eqd 14851 . . . 4 (𝑐 = 𝑑 → ⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩)
3332sneqd 4642 . . 3 (𝑐 = 𝑑 → {⟨“𝐴𝐵𝑐”⟩} = {⟨“𝐴𝐵𝑑”⟩})
3433disjor 5129 . 2 (Disj 𝑐𝑍 {⟨“𝐴𝐵𝑐”⟩} ↔ ∀𝑐𝑍𝑑𝑍 (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
3528, 34sylibr 233 1 ((𝐴𝑋𝐵𝑌) → Disj 𝑐𝑍 {⟨“𝐴𝐵𝑐”⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wral 3050  Vcvv 3461  cin 3943  c0 4322  {csn 4630  Disj wdisj 5114  cfv 6549  0cc0 11140  1c1 11141  2c2 12300  3c3 12301  chash 14325  Word cword 14500  ⟨“cs3 14829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-fzo 13663  df-hash 14326  df-word 14501  df-concat 14557  df-s1 14582  df-s2 14835  df-s3 14836
This theorem is referenced by:  fusgreghash2wspv  30217
  Copyright terms: Public domain W3C validator