MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3sndisj Structured version   Visualization version   GIF version

Theorem s3sndisj 14317
Description: The singletons consisting of length 3 strings which have distinct third symbols are disjunct. (Contributed by AV, 17-May-2021.)
Assertion
Ref Expression
s3sndisj ((𝐴𝑋𝐵𝑌) → Disj 𝑐𝑍 {⟨“𝐴𝐵𝑐”⟩})
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝑋,𝑐   𝑌,𝑐   𝑍,𝑐

Proof of Theorem s3sndisj
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 orc 863 . . . . 5 (𝑐 = 𝑑 → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
21a1d 25 . . . 4 (𝑐 = 𝑑 → (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)))
3 s3cli 14233 . . . . . . . . . . . 12 ⟨“𝐴𝐵𝑐”⟩ ∈ Word V
4 elex 3518 . . . . . . . . . . . . . . 15 (𝐴𝑋𝐴 ∈ V)
5 elex 3518 . . . . . . . . . . . . . . 15 (𝐵𝑌𝐵 ∈ V)
64, 5anim12i 612 . . . . . . . . . . . . . 14 ((𝐴𝑋𝐵𝑌) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
7 elex 3518 . . . . . . . . . . . . . . 15 (𝑑𝑍𝑑 ∈ V)
87adantl 482 . . . . . . . . . . . . . 14 ((𝑐𝑍𝑑𝑍) → 𝑑 ∈ V)
96, 8anim12i 612 . . . . . . . . . . . . 13 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑑 ∈ V))
10 df-3an 1083 . . . . . . . . . . . . 13 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑑 ∈ V) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑑 ∈ V))
119, 10sylibr 235 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑑 ∈ V))
12 eqwrds3 14315 . . . . . . . . . . . 12 ((⟨“𝐴𝐵𝑐”⟩ ∈ Word V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑑 ∈ V)) → (⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩ ↔ ((♯‘⟨“𝐴𝐵𝑐”⟩) = 3 ∧ ((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑))))
133, 11, 12sylancr 587 . . . . . . . . . . 11 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩ ↔ ((♯‘⟨“𝐴𝐵𝑐”⟩) = 3 ∧ ((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑))))
14 s3fv2 14245 . . . . . . . . . . . . . 14 (𝑐 ∈ V → (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑐)
1514elv 3505 . . . . . . . . . . . . 13 (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑐
16 simp3 1132 . . . . . . . . . . . . 13 (((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑) → (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑)
1715, 16syl5eqr 2875 . . . . . . . . . . . 12 (((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑) → 𝑐 = 𝑑)
1817adantl 482 . . . . . . . . . . 11 (((♯‘⟨“𝐴𝐵𝑐”⟩) = 3 ∧ ((⟨“𝐴𝐵𝑐”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝑐”⟩‘2) = 𝑑)) → 𝑐 = 𝑑)
1913, 18syl6bi 254 . . . . . . . . . 10 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩ → 𝑐 = 𝑑))
2019con3rr3 158 . . . . . . . . 9 𝑐 = 𝑑 → (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → ¬ ⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩))
2120imp 407 . . . . . . . 8 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → ¬ ⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩)
2221neqned 3028 . . . . . . 7 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → ⟨“𝐴𝐵𝑐”⟩ ≠ ⟨“𝐴𝐵𝑑”⟩)
23 disjsn2 4647 . . . . . . 7 (⟨“𝐴𝐵𝑐”⟩ ≠ ⟨“𝐴𝐵𝑑”⟩ → ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)
2422, 23syl 17 . . . . . 6 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)
2524olcd 872 . . . . 5 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍))) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
2625ex 413 . . . 4 𝑐 = 𝑑 → (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅)))
272, 26pm2.61i 183 . . 3 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑍𝑑𝑍)) → (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
2827ralrimivva 3196 . 2 ((𝐴𝑋𝐵𝑌) → ∀𝑐𝑍𝑑𝑍 (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
29 eqidd 2827 . . . . 5 (𝑐 = 𝑑𝐴 = 𝐴)
30 eqidd 2827 . . . . 5 (𝑐 = 𝑑𝐵 = 𝐵)
31 id 22 . . . . 5 (𝑐 = 𝑑𝑐 = 𝑑)
3229, 30, 31s3eqd 14216 . . . 4 (𝑐 = 𝑑 → ⟨“𝐴𝐵𝑐”⟩ = ⟨“𝐴𝐵𝑑”⟩)
3332sneqd 4576 . . 3 (𝑐 = 𝑑 → {⟨“𝐴𝐵𝑐”⟩} = {⟨“𝐴𝐵𝑑”⟩})
3433disjor 5043 . 2 (Disj 𝑐𝑍 {⟨“𝐴𝐵𝑐”⟩} ↔ ∀𝑐𝑍𝑑𝑍 (𝑐 = 𝑑 ∨ ({⟨“𝐴𝐵𝑐”⟩} ∩ {⟨“𝐴𝐵𝑑”⟩}) = ∅))
3528, 34sylibr 235 1 ((𝐴𝑋𝐵𝑌) → Disj 𝑐𝑍 {⟨“𝐴𝐵𝑐”⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wral 3143  Vcvv 3500  cin 3939  c0 4295  {csn 4564  Disj wdisj 5028  cfv 6352  0cc0 10526  1c1 10527  2c2 11681  3c3 11682  chash 13680  Word cword 13851  ⟨“cs3 14194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-disj 5029  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-fzo 13024  df-hash 13681  df-word 13852  df-concat 13913  df-s1 13940  df-s2 14200  df-s3 14201
This theorem is referenced by:  fusgreghash2wspv  28028
  Copyright terms: Public domain W3C validator