![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknon | Structured version Visualization version GIF version |
Description: The set of closed walks on vertex 𝑋 of length 𝑁 in a graph 𝐺 as words over the set of vertices. (Contributed by Alexander van der Vekens, 14-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 24-Mar-2022.) |
Ref | Expression |
---|---|
clwwlknon | ⊢ (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2748 | . . . 4 ⊢ (𝑣 = 𝑋 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋)) | |
2 | 1 | rabbidv 3415 | . . 3 ⊢ (𝑣 = 𝑋 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
3 | oveq1 7364 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 ClWWalksN 𝐺) = (𝑁 ClWWalksN 𝐺)) | |
4 | 3 | rabeqdv 3422 | . . 3 ⊢ (𝑛 = 𝑁 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
5 | clwwlknonmpo 29033 | . . 3 ⊢ (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) | |
6 | ovex 7390 | . . . 4 ⊢ (𝑁 ClWWalksN 𝐺) ∈ V | |
7 | 6 | rabex 5289 | . . 3 ⊢ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ V |
8 | 2, 4, 5, 7 | ovmpo 7515 | . 2 ⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
9 | 5 | mpondm0 7594 | . . 3 ⊢ (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅) |
10 | isclwwlkn 28971 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑤 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑤) = 𝑁)) | |
11 | eqid 2736 | . . . . . . . . . . . . . 14 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
12 | 11 | clwwlkbp 28929 | . . . . . . . . . . . . 13 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅)) |
13 | fstwrdne 14443 | . . . . . . . . . . . . . 14 ⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅) → (𝑤‘0) ∈ (Vtx‘𝐺)) | |
14 | 13 | 3adant1 1130 | . . . . . . . . . . . . 13 ⊢ ((𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅) → (𝑤‘0) ∈ (Vtx‘𝐺)) |
15 | 12, 14 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → (𝑤‘0) ∈ (Vtx‘𝐺)) |
16 | 15 | adantr 481 | . . . . . . . . . . 11 ⊢ ((𝑤 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑤) = 𝑁) → (𝑤‘0) ∈ (Vtx‘𝐺)) |
17 | 10, 16 | sylbi 216 | . . . . . . . . . 10 ⊢ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → (𝑤‘0) ∈ (Vtx‘𝐺)) |
18 | 17 | adantr 481 | . . . . . . . . 9 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) ∈ (Vtx‘𝐺)) |
19 | eleq1 2825 | . . . . . . . . . 10 ⊢ ((𝑤‘0) = 𝑋 → ((𝑤‘0) ∈ (Vtx‘𝐺) ↔ 𝑋 ∈ (Vtx‘𝐺))) | |
20 | 19 | adantl 482 | . . . . . . . . 9 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → ((𝑤‘0) ∈ (Vtx‘𝐺) ↔ 𝑋 ∈ (Vtx‘𝐺))) |
21 | 18, 20 | mpbid 231 | . . . . . . . 8 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → 𝑋 ∈ (Vtx‘𝐺)) |
22 | clwwlknnn 28977 | . . . . . . . . . 10 ⊢ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ) | |
23 | 22 | nnnn0d 12473 | . . . . . . . . 9 ⊢ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ0) |
24 | 23 | adantr 481 | . . . . . . . 8 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → 𝑁 ∈ ℕ0) |
25 | 21, 24 | jca 512 | . . . . . . 7 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0)) |
26 | 25 | ex 413 | . . . . . 6 ⊢ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑤‘0) = 𝑋 → (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0))) |
27 | 26 | con3rr3 155 | . . . . 5 ⊢ (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → ¬ (𝑤‘0) = 𝑋)) |
28 | 27 | ralrimiv 3142 | . . . 4 ⊢ (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ (𝑤‘0) = 𝑋) |
29 | rabeq0 4344 | . . . 4 ⊢ ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = ∅ ↔ ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ (𝑤‘0) = 𝑋) | |
30 | 28, 29 | sylibr 233 | . . 3 ⊢ (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = ∅) |
31 | 9, 30 | eqtr4d 2779 | . 2 ⊢ (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
32 | 8, 31 | pm2.61i 182 | 1 ⊢ (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 {crab 3407 Vcvv 3445 ∅c0 4282 ‘cfv 6496 (class class class)co 7357 0cc0 11051 ℕ0cn0 12413 ♯chash 14230 Word cword 14402 Vtxcvtx 27947 ClWWalkscclwwlk 28925 ClWWalksN cclwwlkn 28968 ClWWalksNOncclwwlknon 29031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-oadd 8416 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-n0 12414 df-xnn0 12486 df-z 12500 df-uz 12764 df-fz 13425 df-fzo 13568 df-hash 14231 df-word 14403 df-clwwlk 28926 df-clwwlkn 28969 df-clwwlknon 29032 |
This theorem is referenced by: isclwwlknon 29035 clwwlknonfin 29038 clwwlknon1 29041 clwwlknon2 29046 clwwlknondisj 29055 clwwlkvbij 29057 extwwlkfab 29296 clwwlknonclwlknonf1o 29306 |
Copyright terms: Public domain | W3C validator |