Step | Hyp | Ref
| Expression |
1 | | eqeq2 2744 |
. . . 4
β’ (π£ = π β ((π€β0) = π£ β (π€β0) = π)) |
2 | 1 | rabbidv 3440 |
. . 3
β’ (π£ = π β {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£} = {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π}) |
3 | | oveq1 7412 |
. . . 4
β’ (π = π β (π ClWWalksN πΊ) = (π ClWWalksN πΊ)) |
4 | 3 | rabeqdv 3447 |
. . 3
β’ (π = π β {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π} = {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π}) |
5 | | clwwlknonmpo 29331 |
. . 3
β’
(ClWWalksNOnβπΊ) = (π£ β (VtxβπΊ), π β β0 β¦ {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£}) |
6 | | ovex 7438 |
. . . 4
β’ (π ClWWalksN πΊ) β V |
7 | 6 | rabex 5331 |
. . 3
β’ {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π} β V |
8 | 2, 4, 5, 7 | ovmpo 7564 |
. 2
β’ ((π β (VtxβπΊ) β§ π β β0) β (π(ClWWalksNOnβπΊ)π) = {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π}) |
9 | 5 | mpondm0 7643 |
. . 3
β’ (Β¬
(π β (VtxβπΊ) β§ π β β0) β (π(ClWWalksNOnβπΊ)π) = β
) |
10 | | isclwwlkn 29269 |
. . . . . . . . . . 11
β’ (π€ β (π ClWWalksN πΊ) β (π€ β (ClWWalksβπΊ) β§ (β―βπ€) = π)) |
11 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(VtxβπΊ) =
(VtxβπΊ) |
12 | 11 | clwwlkbp 29227 |
. . . . . . . . . . . . 13
β’ (π€ β (ClWWalksβπΊ) β (πΊ β V β§ π€ β Word (VtxβπΊ) β§ π€ β β
)) |
13 | | fstwrdne 14501 |
. . . . . . . . . . . . . 14
β’ ((π€ β Word (VtxβπΊ) β§ π€ β β
) β (π€β0) β (VtxβπΊ)) |
14 | 13 | 3adant1 1130 |
. . . . . . . . . . . . 13
β’ ((πΊ β V β§ π€ β Word (VtxβπΊ) β§ π€ β β
) β (π€β0) β (VtxβπΊ)) |
15 | 12, 14 | syl 17 |
. . . . . . . . . . . 12
β’ (π€ β (ClWWalksβπΊ) β (π€β0) β (VtxβπΊ)) |
16 | 15 | adantr 481 |
. . . . . . . . . . 11
β’ ((π€ β (ClWWalksβπΊ) β§ (β―βπ€) = π) β (π€β0) β (VtxβπΊ)) |
17 | 10, 16 | sylbi 216 |
. . . . . . . . . 10
β’ (π€ β (π ClWWalksN πΊ) β (π€β0) β (VtxβπΊ)) |
18 | 17 | adantr 481 |
. . . . . . . . 9
β’ ((π€ β (π ClWWalksN πΊ) β§ (π€β0) = π) β (π€β0) β (VtxβπΊ)) |
19 | | eleq1 2821 |
. . . . . . . . . 10
β’ ((π€β0) = π β ((π€β0) β (VtxβπΊ) β π β (VtxβπΊ))) |
20 | 19 | adantl 482 |
. . . . . . . . 9
β’ ((π€ β (π ClWWalksN πΊ) β§ (π€β0) = π) β ((π€β0) β (VtxβπΊ) β π β (VtxβπΊ))) |
21 | 18, 20 | mpbid 231 |
. . . . . . . 8
β’ ((π€ β (π ClWWalksN πΊ) β§ (π€β0) = π) β π β (VtxβπΊ)) |
22 | | clwwlknnn 29275 |
. . . . . . . . . 10
β’ (π€ β (π ClWWalksN πΊ) β π β β) |
23 | 22 | nnnn0d 12528 |
. . . . . . . . 9
β’ (π€ β (π ClWWalksN πΊ) β π β
β0) |
24 | 23 | adantr 481 |
. . . . . . . 8
β’ ((π€ β (π ClWWalksN πΊ) β§ (π€β0) = π) β π β
β0) |
25 | 21, 24 | jca 512 |
. . . . . . 7
β’ ((π€ β (π ClWWalksN πΊ) β§ (π€β0) = π) β (π β (VtxβπΊ) β§ π β
β0)) |
26 | 25 | ex 413 |
. . . . . 6
β’ (π€ β (π ClWWalksN πΊ) β ((π€β0) = π β (π β (VtxβπΊ) β§ π β
β0))) |
27 | 26 | con3rr3 155 |
. . . . 5
β’ (Β¬
(π β (VtxβπΊ) β§ π β β0) β (π€ β (π ClWWalksN πΊ) β Β¬ (π€β0) = π)) |
28 | 27 | ralrimiv 3145 |
. . . 4
β’ (Β¬
(π β (VtxβπΊ) β§ π β β0) β
βπ€ β (π ClWWalksN πΊ) Β¬ (π€β0) = π) |
29 | | rabeq0 4383 |
. . . 4
β’ ({π€ β (π ClWWalksN πΊ) β£ (π€β0) = π} = β
β βπ€ β (π ClWWalksN πΊ) Β¬ (π€β0) = π) |
30 | 28, 29 | sylibr 233 |
. . 3
β’ (Β¬
(π β (VtxβπΊ) β§ π β β0) β {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π} = β
) |
31 | 9, 30 | eqtr4d 2775 |
. 2
β’ (Β¬
(π β (VtxβπΊ) β§ π β β0) β (π(ClWWalksNOnβπΊ)π) = {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π}) |
32 | 8, 31 | pm2.61i 182 |
1
β’ (π(ClWWalksNOnβπΊ)π) = {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π} |