MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon Structured version   Visualization version   GIF version

Theorem clwwlknon 28454
Description: The set of closed walks on vertex 𝑋 of length 𝑁 in a graph 𝐺 as words over the set of vertices. (Contributed by Alexander van der Vekens, 14-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 24-Mar-2022.)
Assertion
Ref Expression
clwwlknon (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑋

Proof of Theorem clwwlknon
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2750 . . . 4 (𝑣 = 𝑋 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋))
21rabbidv 3414 . . 3 (𝑣 = 𝑋 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
3 oveq1 7282 . . . 4 (𝑛 = 𝑁 → (𝑛 ClWWalksN 𝐺) = (𝑁 ClWWalksN 𝐺))
43rabeqdv 3419 . . 3 (𝑛 = 𝑁 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
5 clwwlknonmpo 28453 . . 3 (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
6 ovex 7308 . . . 4 (𝑁 ClWWalksN 𝐺) ∈ V
76rabex 5256 . . 3 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ V
82, 4, 5, 7ovmpo 7433 . 2 ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
95mpondm0 7510 . . 3 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅)
10 isclwwlkn 28391 . . . . . . . . . . 11 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑤 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑤) = 𝑁))
11 eqid 2738 . . . . . . . . . . . . . 14 (Vtx‘𝐺) = (Vtx‘𝐺)
1211clwwlkbp 28349 . . . . . . . . . . . . 13 (𝑤 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅))
13 fstwrdne 14258 . . . . . . . . . . . . . 14 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅) → (𝑤‘0) ∈ (Vtx‘𝐺))
14133adant1 1129 . . . . . . . . . . . . 13 ((𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅) → (𝑤‘0) ∈ (Vtx‘𝐺))
1512, 14syl 17 . . . . . . . . . . . 12 (𝑤 ∈ (ClWWalks‘𝐺) → (𝑤‘0) ∈ (Vtx‘𝐺))
1615adantr 481 . . . . . . . . . . 11 ((𝑤 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑤) = 𝑁) → (𝑤‘0) ∈ (Vtx‘𝐺))
1710, 16sylbi 216 . . . . . . . . . 10 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → (𝑤‘0) ∈ (Vtx‘𝐺))
1817adantr 481 . . . . . . . . 9 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) ∈ (Vtx‘𝐺))
19 eleq1 2826 . . . . . . . . . 10 ((𝑤‘0) = 𝑋 → ((𝑤‘0) ∈ (Vtx‘𝐺) ↔ 𝑋 ∈ (Vtx‘𝐺)))
2019adantl 482 . . . . . . . . 9 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → ((𝑤‘0) ∈ (Vtx‘𝐺) ↔ 𝑋 ∈ (Vtx‘𝐺)))
2118, 20mpbid 231 . . . . . . . 8 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → 𝑋 ∈ (Vtx‘𝐺))
22 clwwlknnn 28397 . . . . . . . . . 10 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ)
2322nnnn0d 12293 . . . . . . . . 9 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ0)
2423adantr 481 . . . . . . . 8 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → 𝑁 ∈ ℕ0)
2521, 24jca 512 . . . . . . 7 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0))
2625ex 413 . . . . . 6 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑤‘0) = 𝑋 → (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0)))
2726con3rr3 155 . . . . 5 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → ¬ (𝑤‘0) = 𝑋))
2827ralrimiv 3102 . . . 4 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ (𝑤‘0) = 𝑋)
29 rabeq0 4318 . . . 4 ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = ∅ ↔ ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ (𝑤‘0) = 𝑋)
3028, 29sylibr 233 . . 3 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = ∅)
319, 30eqtr4d 2781 . 2 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
328, 31pm2.61i 182 1 (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  Vcvv 3432  c0 4256  cfv 6433  (class class class)co 7275  0cc0 10871  0cn0 12233  chash 14044  Word cword 14217  Vtxcvtx 27366  ClWWalkscclwwlk 28345   ClWWalksN cclwwlkn 28388  ClWWalksNOncclwwlknon 28451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-clwwlk 28346  df-clwwlkn 28389  df-clwwlknon 28452
This theorem is referenced by:  isclwwlknon  28455  clwwlknonfin  28458  clwwlknon1  28461  clwwlknon2  28466  clwwlknondisj  28475  clwwlkvbij  28477  extwwlkfab  28716  clwwlknonclwlknonf1o  28726
  Copyright terms: Public domain W3C validator