MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon Structured version   Visualization version   GIF version

Theorem clwwlknon 30091
Description: The set of closed walks on vertex 𝑋 of length 𝑁 in a graph 𝐺 as words over the set of vertices. (Contributed by Alexander van der Vekens, 14-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 24-Mar-2022.)
Assertion
Ref Expression
clwwlknon (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑋

Proof of Theorem clwwlknon
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2745 . . . 4 (𝑣 = 𝑋 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋))
21rabbidv 3403 . . 3 (𝑣 = 𝑋 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
3 oveq1 7362 . . . 4 (𝑛 = 𝑁 → (𝑛 ClWWalksN 𝐺) = (𝑁 ClWWalksN 𝐺))
43rabeqdv 3411 . . 3 (𝑛 = 𝑁 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
5 clwwlknonmpo 30090 . . 3 (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
6 ovex 7388 . . . 4 (𝑁 ClWWalksN 𝐺) ∈ V
76rabex 5281 . . 3 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ V
82, 4, 5, 7ovmpo 7515 . 2 ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
95mpondm0 7595 . . 3 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅)
10 isclwwlkn 30028 . . . . . . . . . . 11 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑤 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑤) = 𝑁))
11 eqid 2733 . . . . . . . . . . . . . 14 (Vtx‘𝐺) = (Vtx‘𝐺)
1211clwwlkbp 29986 . . . . . . . . . . . . 13 (𝑤 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅))
13 fstwrdne 14469 . . . . . . . . . . . . . 14 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅) → (𝑤‘0) ∈ (Vtx‘𝐺))
14133adant1 1130 . . . . . . . . . . . . 13 ((𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅) → (𝑤‘0) ∈ (Vtx‘𝐺))
1512, 14syl 17 . . . . . . . . . . . 12 (𝑤 ∈ (ClWWalks‘𝐺) → (𝑤‘0) ∈ (Vtx‘𝐺))
1615adantr 480 . . . . . . . . . . 11 ((𝑤 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑤) = 𝑁) → (𝑤‘0) ∈ (Vtx‘𝐺))
1710, 16sylbi 217 . . . . . . . . . 10 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → (𝑤‘0) ∈ (Vtx‘𝐺))
1817adantr 480 . . . . . . . . 9 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) ∈ (Vtx‘𝐺))
19 eleq1 2821 . . . . . . . . . 10 ((𝑤‘0) = 𝑋 → ((𝑤‘0) ∈ (Vtx‘𝐺) ↔ 𝑋 ∈ (Vtx‘𝐺)))
2019adantl 481 . . . . . . . . 9 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → ((𝑤‘0) ∈ (Vtx‘𝐺) ↔ 𝑋 ∈ (Vtx‘𝐺)))
2118, 20mpbid 232 . . . . . . . 8 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → 𝑋 ∈ (Vtx‘𝐺))
22 clwwlknnn 30034 . . . . . . . . . 10 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ)
2322nnnn0d 12453 . . . . . . . . 9 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ0)
2423adantr 480 . . . . . . . 8 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → 𝑁 ∈ ℕ0)
2521, 24jca 511 . . . . . . 7 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0))
2625ex 412 . . . . . 6 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑤‘0) = 𝑋 → (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0)))
2726con3rr3 155 . . . . 5 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → ¬ (𝑤‘0) = 𝑋))
2827ralrimiv 3124 . . . 4 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ (𝑤‘0) = 𝑋)
29 rabeq0 4337 . . . 4 ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = ∅ ↔ ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ (𝑤‘0) = 𝑋)
3028, 29sylibr 234 . . 3 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = ∅)
319, 30eqtr4d 2771 . 2 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
328, 31pm2.61i 182 1 (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  {crab 3396  Vcvv 3437  c0 4282  cfv 6489  (class class class)co 7355  0cc0 11017  0cn0 12392  chash 14244  Word cword 14427  Vtxcvtx 28995  ClWWalkscclwwlk 29982   ClWWalksN cclwwlkn 30025  ClWWalksNOncclwwlknon 30088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-hash 14245  df-word 14428  df-clwwlk 29983  df-clwwlkn 30026  df-clwwlknon 30089
This theorem is referenced by:  isclwwlknon  30092  clwwlknonfin  30095  clwwlknon1  30098  clwwlknon2  30103  clwwlknondisj  30112  clwwlkvbij  30114  extwwlkfab  30353  clwwlknonclwlknonf1o  30363
  Copyright terms: Public domain W3C validator