MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon Structured version   Visualization version   GIF version

Theorem clwwlknon 30109
Description: The set of closed walks on vertex 𝑋 of length 𝑁 in a graph 𝐺 as words over the set of vertices. (Contributed by Alexander van der Vekens, 14-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 24-Mar-2022.)
Assertion
Ref Expression
clwwlknon (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑋

Proof of Theorem clwwlknon
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2749 . . . 4 (𝑣 = 𝑋 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋))
21rabbidv 3444 . . 3 (𝑣 = 𝑋 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
3 oveq1 7438 . . . 4 (𝑛 = 𝑁 → (𝑛 ClWWalksN 𝐺) = (𝑁 ClWWalksN 𝐺))
43rabeqdv 3452 . . 3 (𝑛 = 𝑁 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
5 clwwlknonmpo 30108 . . 3 (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
6 ovex 7464 . . . 4 (𝑁 ClWWalksN 𝐺) ∈ V
76rabex 5339 . . 3 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ V
82, 4, 5, 7ovmpo 7593 . 2 ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
95mpondm0 7673 . . 3 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅)
10 isclwwlkn 30046 . . . . . . . . . . 11 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑤 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑤) = 𝑁))
11 eqid 2737 . . . . . . . . . . . . . 14 (Vtx‘𝐺) = (Vtx‘𝐺)
1211clwwlkbp 30004 . . . . . . . . . . . . 13 (𝑤 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅))
13 fstwrdne 14593 . . . . . . . . . . . . . 14 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅) → (𝑤‘0) ∈ (Vtx‘𝐺))
14133adant1 1131 . . . . . . . . . . . . 13 ((𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅) → (𝑤‘0) ∈ (Vtx‘𝐺))
1512, 14syl 17 . . . . . . . . . . . 12 (𝑤 ∈ (ClWWalks‘𝐺) → (𝑤‘0) ∈ (Vtx‘𝐺))
1615adantr 480 . . . . . . . . . . 11 ((𝑤 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑤) = 𝑁) → (𝑤‘0) ∈ (Vtx‘𝐺))
1710, 16sylbi 217 . . . . . . . . . 10 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → (𝑤‘0) ∈ (Vtx‘𝐺))
1817adantr 480 . . . . . . . . 9 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) ∈ (Vtx‘𝐺))
19 eleq1 2829 . . . . . . . . . 10 ((𝑤‘0) = 𝑋 → ((𝑤‘0) ∈ (Vtx‘𝐺) ↔ 𝑋 ∈ (Vtx‘𝐺)))
2019adantl 481 . . . . . . . . 9 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → ((𝑤‘0) ∈ (Vtx‘𝐺) ↔ 𝑋 ∈ (Vtx‘𝐺)))
2118, 20mpbid 232 . . . . . . . 8 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → 𝑋 ∈ (Vtx‘𝐺))
22 clwwlknnn 30052 . . . . . . . . . 10 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ)
2322nnnn0d 12587 . . . . . . . . 9 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ0)
2423adantr 480 . . . . . . . 8 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → 𝑁 ∈ ℕ0)
2521, 24jca 511 . . . . . . 7 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0))
2625ex 412 . . . . . 6 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑤‘0) = 𝑋 → (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0)))
2726con3rr3 155 . . . . 5 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → ¬ (𝑤‘0) = 𝑋))
2827ralrimiv 3145 . . . 4 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ (𝑤‘0) = 𝑋)
29 rabeq0 4388 . . . 4 ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = ∅ ↔ ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ (𝑤‘0) = 𝑋)
3028, 29sylibr 234 . . 3 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = ∅)
319, 30eqtr4d 2780 . 2 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
328, 31pm2.61i 182 1 (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  {crab 3436  Vcvv 3480  c0 4333  cfv 6561  (class class class)co 7431  0cc0 11155  0cn0 12526  chash 14369  Word cword 14552  Vtxcvtx 29013  ClWWalkscclwwlk 30000   ClWWalksN cclwwlkn 30043  ClWWalksNOncclwwlknon 30106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-clwwlk 30001  df-clwwlkn 30044  df-clwwlknon 30107
This theorem is referenced by:  isclwwlknon  30110  clwwlknonfin  30113  clwwlknon1  30116  clwwlknon2  30121  clwwlknondisj  30130  clwwlkvbij  30132  extwwlkfab  30371  clwwlknonclwlknonf1o  30381
  Copyright terms: Public domain W3C validator