| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlknon | Structured version Visualization version GIF version | ||
| Description: The set of closed walks on vertex 𝑋 of length 𝑁 in a graph 𝐺 as words over the set of vertices. (Contributed by Alexander van der Vekens, 14-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 24-Mar-2022.) |
| Ref | Expression |
|---|---|
| clwwlknon | ⊢ (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2749 | . . . 4 ⊢ (𝑣 = 𝑋 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋)) | |
| 2 | 1 | rabbidv 3444 | . . 3 ⊢ (𝑣 = 𝑋 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
| 3 | oveq1 7438 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 ClWWalksN 𝐺) = (𝑁 ClWWalksN 𝐺)) | |
| 4 | 3 | rabeqdv 3452 | . . 3 ⊢ (𝑛 = 𝑁 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
| 5 | clwwlknonmpo 30108 | . . 3 ⊢ (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) | |
| 6 | ovex 7464 | . . . 4 ⊢ (𝑁 ClWWalksN 𝐺) ∈ V | |
| 7 | 6 | rabex 5339 | . . 3 ⊢ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ V |
| 8 | 2, 4, 5, 7 | ovmpo 7593 | . 2 ⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
| 9 | 5 | mpondm0 7673 | . . 3 ⊢ (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ∅) |
| 10 | isclwwlkn 30046 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑤 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑤) = 𝑁)) | |
| 11 | eqid 2737 | . . . . . . . . . . . . . 14 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 12 | 11 | clwwlkbp 30004 | . . . . . . . . . . . . 13 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅)) |
| 13 | fstwrdne 14593 | . . . . . . . . . . . . . 14 ⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅) → (𝑤‘0) ∈ (Vtx‘𝐺)) | |
| 14 | 13 | 3adant1 1131 | . . . . . . . . . . . . 13 ⊢ ((𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅) → (𝑤‘0) ∈ (Vtx‘𝐺)) |
| 15 | 12, 14 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → (𝑤‘0) ∈ (Vtx‘𝐺)) |
| 16 | 15 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝑤 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑤) = 𝑁) → (𝑤‘0) ∈ (Vtx‘𝐺)) |
| 17 | 10, 16 | sylbi 217 | . . . . . . . . . 10 ⊢ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → (𝑤‘0) ∈ (Vtx‘𝐺)) |
| 18 | 17 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) ∈ (Vtx‘𝐺)) |
| 19 | eleq1 2829 | . . . . . . . . . 10 ⊢ ((𝑤‘0) = 𝑋 → ((𝑤‘0) ∈ (Vtx‘𝐺) ↔ 𝑋 ∈ (Vtx‘𝐺))) | |
| 20 | 19 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → ((𝑤‘0) ∈ (Vtx‘𝐺) ↔ 𝑋 ∈ (Vtx‘𝐺))) |
| 21 | 18, 20 | mpbid 232 | . . . . . . . 8 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → 𝑋 ∈ (Vtx‘𝐺)) |
| 22 | clwwlknnn 30052 | . . . . . . . . . 10 ⊢ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ) | |
| 23 | 22 | nnnn0d 12587 | . . . . . . . . 9 ⊢ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ0) |
| 24 | 23 | adantr 480 | . . . . . . . 8 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → 𝑁 ∈ ℕ0) |
| 25 | 21, 24 | jca 511 | . . . . . . 7 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0)) |
| 26 | 25 | ex 412 | . . . . . 6 ⊢ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑤‘0) = 𝑋 → (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0))) |
| 27 | 26 | con3rr3 155 | . . . . 5 ⊢ (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → ¬ (𝑤‘0) = 𝑋)) |
| 28 | 27 | ralrimiv 3145 | . . . 4 ⊢ (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ (𝑤‘0) = 𝑋) |
| 29 | rabeq0 4388 | . . . 4 ⊢ ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = ∅ ↔ ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ (𝑤‘0) = 𝑋) | |
| 30 | 28, 29 | sylibr 234 | . . 3 ⊢ (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = ∅) |
| 31 | 9, 30 | eqtr4d 2780 | . 2 ⊢ (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
| 32 | 8, 31 | pm2.61i 182 | 1 ⊢ (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 {crab 3436 Vcvv 3480 ∅c0 4333 ‘cfv 6561 (class class class)co 7431 0cc0 11155 ℕ0cn0 12526 ♯chash 14369 Word cword 14552 Vtxcvtx 29013 ClWWalkscclwwlk 30000 ClWWalksN cclwwlkn 30043 ClWWalksNOncclwwlknon 30106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-hash 14370 df-word 14553 df-clwwlk 30001 df-clwwlkn 30044 df-clwwlknon 30107 |
| This theorem is referenced by: isclwwlknon 30110 clwwlknonfin 30113 clwwlknon1 30116 clwwlknon2 30121 clwwlknondisj 30130 clwwlkvbij 30132 extwwlkfab 30371 clwwlknonclwlknonf1o 30381 |
| Copyright terms: Public domain | W3C validator |