MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon Structured version   Visualization version   GIF version

Theorem clwwlknon 29332
Description: The set of closed walks on vertex 𝑋 of length 𝑁 in a graph 𝐺 as words over the set of vertices. (Contributed by Alexander van der Vekens, 14-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 24-Mar-2022.)
Assertion
Ref Expression
clwwlknon (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) = {𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}
Distinct variable groups:   𝑀,𝐺   𝑀,𝑁   𝑀,𝑋

Proof of Theorem clwwlknon
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2744 . . . 4 (𝑣 = 𝑋 β†’ ((π‘€β€˜0) = 𝑣 ↔ (π‘€β€˜0) = 𝑋))
21rabbidv 3440 . . 3 (𝑣 = 𝑋 β†’ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣} = {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
3 oveq1 7412 . . . 4 (𝑛 = 𝑁 β†’ (𝑛 ClWWalksN 𝐺) = (𝑁 ClWWalksN 𝐺))
43rabeqdv 3447 . . 3 (𝑛 = 𝑁 β†’ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} = {𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
5 clwwlknonmpo 29331 . . 3 (ClWWalksNOnβ€˜πΊ) = (𝑣 ∈ (Vtxβ€˜πΊ), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣})
6 ovex 7438 . . . 4 (𝑁 ClWWalksN 𝐺) ∈ V
76rabex 5331 . . 3 {𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ∈ V
82, 4, 5, 7ovmpo 7564 . 2 ((𝑋 ∈ (Vtxβ€˜πΊ) ∧ 𝑁 ∈ β„•0) β†’ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) = {𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
95mpondm0 7643 . . 3 (Β¬ (𝑋 ∈ (Vtxβ€˜πΊ) ∧ 𝑁 ∈ β„•0) β†’ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) = βˆ…)
10 isclwwlkn 29269 . . . . . . . . . . 11 (𝑀 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑀 ∈ (ClWWalksβ€˜πΊ) ∧ (β™―β€˜π‘€) = 𝑁))
11 eqid 2732 . . . . . . . . . . . . . 14 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
1211clwwlkbp 29227 . . . . . . . . . . . . 13 (𝑀 ∈ (ClWWalksβ€˜πΊ) β†’ (𝐺 ∈ V ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ 𝑀 β‰  βˆ…))
13 fstwrdne 14501 . . . . . . . . . . . . . 14 ((𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ 𝑀 β‰  βˆ…) β†’ (π‘€β€˜0) ∈ (Vtxβ€˜πΊ))
14133adant1 1130 . . . . . . . . . . . . 13 ((𝐺 ∈ V ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ 𝑀 β‰  βˆ…) β†’ (π‘€β€˜0) ∈ (Vtxβ€˜πΊ))
1512, 14syl 17 . . . . . . . . . . . 12 (𝑀 ∈ (ClWWalksβ€˜πΊ) β†’ (π‘€β€˜0) ∈ (Vtxβ€˜πΊ))
1615adantr 481 . . . . . . . . . . 11 ((𝑀 ∈ (ClWWalksβ€˜πΊ) ∧ (β™―β€˜π‘€) = 𝑁) β†’ (π‘€β€˜0) ∈ (Vtxβ€˜πΊ))
1710, 16sylbi 216 . . . . . . . . . 10 (𝑀 ∈ (𝑁 ClWWalksN 𝐺) β†’ (π‘€β€˜0) ∈ (Vtxβ€˜πΊ))
1817adantr 481 . . . . . . . . 9 ((𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋) β†’ (π‘€β€˜0) ∈ (Vtxβ€˜πΊ))
19 eleq1 2821 . . . . . . . . . 10 ((π‘€β€˜0) = 𝑋 β†’ ((π‘€β€˜0) ∈ (Vtxβ€˜πΊ) ↔ 𝑋 ∈ (Vtxβ€˜πΊ)))
2019adantl 482 . . . . . . . . 9 ((𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋) β†’ ((π‘€β€˜0) ∈ (Vtxβ€˜πΊ) ↔ 𝑋 ∈ (Vtxβ€˜πΊ)))
2118, 20mpbid 231 . . . . . . . 8 ((𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋) β†’ 𝑋 ∈ (Vtxβ€˜πΊ))
22 clwwlknnn 29275 . . . . . . . . . 10 (𝑀 ∈ (𝑁 ClWWalksN 𝐺) β†’ 𝑁 ∈ β„•)
2322nnnn0d 12528 . . . . . . . . 9 (𝑀 ∈ (𝑁 ClWWalksN 𝐺) β†’ 𝑁 ∈ β„•0)
2423adantr 481 . . . . . . . 8 ((𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋) β†’ 𝑁 ∈ β„•0)
2521, 24jca 512 . . . . . . 7 ((𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋) β†’ (𝑋 ∈ (Vtxβ€˜πΊ) ∧ 𝑁 ∈ β„•0))
2625ex 413 . . . . . 6 (𝑀 ∈ (𝑁 ClWWalksN 𝐺) β†’ ((π‘€β€˜0) = 𝑋 β†’ (𝑋 ∈ (Vtxβ€˜πΊ) ∧ 𝑁 ∈ β„•0)))
2726con3rr3 155 . . . . 5 (Β¬ (𝑋 ∈ (Vtxβ€˜πΊ) ∧ 𝑁 ∈ β„•0) β†’ (𝑀 ∈ (𝑁 ClWWalksN 𝐺) β†’ Β¬ (π‘€β€˜0) = 𝑋))
2827ralrimiv 3145 . . . 4 (Β¬ (𝑋 ∈ (Vtxβ€˜πΊ) ∧ 𝑁 ∈ β„•0) β†’ βˆ€π‘€ ∈ (𝑁 ClWWalksN 𝐺) Β¬ (π‘€β€˜0) = 𝑋)
29 rabeq0 4383 . . . 4 ({𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} = βˆ… ↔ βˆ€π‘€ ∈ (𝑁 ClWWalksN 𝐺) Β¬ (π‘€β€˜0) = 𝑋)
3028, 29sylibr 233 . . 3 (Β¬ (𝑋 ∈ (Vtxβ€˜πΊ) ∧ 𝑁 ∈ β„•0) β†’ {𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} = βˆ…)
319, 30eqtr4d 2775 . 2 (Β¬ (𝑋 ∈ (Vtxβ€˜πΊ) ∧ 𝑁 ∈ β„•0) β†’ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) = {𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
328, 31pm2.61i 182 1 (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) = {𝑀 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  {crab 3432  Vcvv 3474  βˆ…c0 4321  β€˜cfv 6540  (class class class)co 7405  0cc0 11106  β„•0cn0 12468  β™―chash 14286  Word cword 14460  Vtxcvtx 28245  ClWWalkscclwwlk 29223   ClWWalksN cclwwlkn 29266  ClWWalksNOncclwwlknon 29329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-clwwlk 29224  df-clwwlkn 29267  df-clwwlknon 29330
This theorem is referenced by:  isclwwlknon  29333  clwwlknonfin  29336  clwwlknon1  29339  clwwlknon2  29344  clwwlknondisj  29353  clwwlkvbij  29355  extwwlkfab  29594  clwwlknonclwlknonf1o  29604
  Copyright terms: Public domain W3C validator