![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snnen2oOLD | Structured version Visualization version GIF version |
Description: Obsolete version of snnen2o 9233 as of 18-Nov-2024. (Contributed by AV, 6-Aug-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
snnen2oOLD | ⊢ ¬ {𝐴} ≈ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8635 | . . . 4 ⊢ 1o ∈ ω | |
2 | php5 9210 | . . . 4 ⊢ (1o ∈ ω → ¬ 1o ≈ suc 1o) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ¬ 1o ≈ suc 1o |
4 | ensn1g 9015 | . . 3 ⊢ (𝐴 ∈ V → {𝐴} ≈ 1o) | |
5 | df-2o 8463 | . . . . . 6 ⊢ 2o = suc 1o | |
6 | 5 | eqcomi 2741 | . . . . 5 ⊢ suc 1o = 2o |
7 | 6 | breq2i 5155 | . . . 4 ⊢ (1o ≈ suc 1o ↔ 1o ≈ 2o) |
8 | ensymb 8994 | . . . . . 6 ⊢ ({𝐴} ≈ 1o ↔ 1o ≈ {𝐴}) | |
9 | entr 8998 | . . . . . . 7 ⊢ ((1o ≈ {𝐴} ∧ {𝐴} ≈ 2o) → 1o ≈ 2o) | |
10 | 9 | ex 413 | . . . . . 6 ⊢ (1o ≈ {𝐴} → ({𝐴} ≈ 2o → 1o ≈ 2o)) |
11 | 8, 10 | sylbi 216 | . . . . 5 ⊢ ({𝐴} ≈ 1o → ({𝐴} ≈ 2o → 1o ≈ 2o)) |
12 | 11 | con3rr3 155 | . . . 4 ⊢ (¬ 1o ≈ 2o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o)) |
13 | 7, 12 | sylnbi 329 | . . 3 ⊢ (¬ 1o ≈ suc 1o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o)) |
14 | 3, 4, 13 | mpsyl 68 | . 2 ⊢ (𝐴 ∈ V → ¬ {𝐴} ≈ 2o) |
15 | 2on0 8478 | . . . 4 ⊢ 2o ≠ ∅ | |
16 | ensymb 8994 | . . . . 5 ⊢ (∅ ≈ 2o ↔ 2o ≈ ∅) | |
17 | en0 9009 | . . . . 5 ⊢ (2o ≈ ∅ ↔ 2o = ∅) | |
18 | 16, 17 | bitri 274 | . . . 4 ⊢ (∅ ≈ 2o ↔ 2o = ∅) |
19 | 15, 18 | nemtbir 3038 | . . 3 ⊢ ¬ ∅ ≈ 2o |
20 | snprc 4720 | . . . . 5 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
21 | 20 | biimpi 215 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
22 | 21 | breq1d 5157 | . . 3 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ≈ 2o ↔ ∅ ≈ 2o)) |
23 | 19, 22 | mtbiri 326 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ≈ 2o) |
24 | 14, 23 | pm2.61i 182 | 1 ⊢ ¬ {𝐴} ≈ 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∅c0 4321 {csn 4627 class class class wbr 5147 suc csuc 6363 ωcom 7851 1oc1o 8455 2oc2o 8456 ≈ cen 8932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-om 7852 df-1o 8462 df-2o 8463 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |