| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snnen2oOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of snnen2o 9250 as of 18-Nov-2024. (Contributed by AV, 6-Aug-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| snnen2oOLD | ⊢ ¬ {𝐴} ≈ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 8657 | . . . 4 ⊢ 1o ∈ ω | |
| 2 | php5 9230 | . . . 4 ⊢ (1o ∈ ω → ¬ 1o ≈ suc 1o) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ¬ 1o ≈ suc 1o |
| 4 | ensn1g 9041 | . . 3 ⊢ (𝐴 ∈ V → {𝐴} ≈ 1o) | |
| 5 | df-2o 8486 | . . . . . 6 ⊢ 2o = suc 1o | |
| 6 | 5 | eqcomi 2745 | . . . . 5 ⊢ suc 1o = 2o |
| 7 | 6 | breq2i 5132 | . . . 4 ⊢ (1o ≈ suc 1o ↔ 1o ≈ 2o) |
| 8 | ensymb 9021 | . . . . . 6 ⊢ ({𝐴} ≈ 1o ↔ 1o ≈ {𝐴}) | |
| 9 | entr 9025 | . . . . . . 7 ⊢ ((1o ≈ {𝐴} ∧ {𝐴} ≈ 2o) → 1o ≈ 2o) | |
| 10 | 9 | ex 412 | . . . . . 6 ⊢ (1o ≈ {𝐴} → ({𝐴} ≈ 2o → 1o ≈ 2o)) |
| 11 | 8, 10 | sylbi 217 | . . . . 5 ⊢ ({𝐴} ≈ 1o → ({𝐴} ≈ 2o → 1o ≈ 2o)) |
| 12 | 11 | con3rr3 155 | . . . 4 ⊢ (¬ 1o ≈ 2o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o)) |
| 13 | 7, 12 | sylnbi 330 | . . 3 ⊢ (¬ 1o ≈ suc 1o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o)) |
| 14 | 3, 4, 13 | mpsyl 68 | . 2 ⊢ (𝐴 ∈ V → ¬ {𝐴} ≈ 2o) |
| 15 | 2on0 8501 | . . . 4 ⊢ 2o ≠ ∅ | |
| 16 | ensymb 9021 | . . . . 5 ⊢ (∅ ≈ 2o ↔ 2o ≈ ∅) | |
| 17 | en0 9037 | . . . . 5 ⊢ (2o ≈ ∅ ↔ 2o = ∅) | |
| 18 | 16, 17 | bitri 275 | . . . 4 ⊢ (∅ ≈ 2o ↔ 2o = ∅) |
| 19 | 15, 18 | nemtbir 3029 | . . 3 ⊢ ¬ ∅ ≈ 2o |
| 20 | snprc 4698 | . . . . 5 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 21 | 20 | biimpi 216 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 22 | 21 | breq1d 5134 | . . 3 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ≈ 2o ↔ ∅ ≈ 2o)) |
| 23 | 19, 22 | mtbiri 327 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ≈ 2o) |
| 24 | 14, 23 | pm2.61i 182 | 1 ⊢ ¬ {𝐴} ≈ 2o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 {csn 4606 class class class wbr 5124 suc csuc 6359 ωcom 7866 1oc1o 8478 2oc2o 8479 ≈ cen 8961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-1o 8485 df-2o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |