Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snnen2oOLD | Structured version Visualization version GIF version |
Description: Obsolete version of snnen2o 9102 as of 18-Nov-2024. (Contributed by AV, 6-Aug-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
snnen2oOLD | ⊢ ¬ {𝐴} ≈ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8541 | . . . 4 ⊢ 1o ∈ ω | |
2 | php5 9079 | . . . 4 ⊢ (1o ∈ ω → ¬ 1o ≈ suc 1o) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ¬ 1o ≈ suc 1o |
4 | ensn1g 8884 | . . 3 ⊢ (𝐴 ∈ V → {𝐴} ≈ 1o) | |
5 | df-2o 8368 | . . . . . 6 ⊢ 2o = suc 1o | |
6 | 5 | eqcomi 2745 | . . . . 5 ⊢ suc 1o = 2o |
7 | 6 | breq2i 5100 | . . . 4 ⊢ (1o ≈ suc 1o ↔ 1o ≈ 2o) |
8 | ensymb 8863 | . . . . . 6 ⊢ ({𝐴} ≈ 1o ↔ 1o ≈ {𝐴}) | |
9 | entr 8867 | . . . . . . 7 ⊢ ((1o ≈ {𝐴} ∧ {𝐴} ≈ 2o) → 1o ≈ 2o) | |
10 | 9 | ex 413 | . . . . . 6 ⊢ (1o ≈ {𝐴} → ({𝐴} ≈ 2o → 1o ≈ 2o)) |
11 | 8, 10 | sylbi 216 | . . . . 5 ⊢ ({𝐴} ≈ 1o → ({𝐴} ≈ 2o → 1o ≈ 2o)) |
12 | 11 | con3rr3 155 | . . . 4 ⊢ (¬ 1o ≈ 2o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o)) |
13 | 7, 12 | sylnbi 329 | . . 3 ⊢ (¬ 1o ≈ suc 1o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o)) |
14 | 3, 4, 13 | mpsyl 68 | . 2 ⊢ (𝐴 ∈ V → ¬ {𝐴} ≈ 2o) |
15 | 2on0 8383 | . . . 4 ⊢ 2o ≠ ∅ | |
16 | ensymb 8863 | . . . . 5 ⊢ (∅ ≈ 2o ↔ 2o ≈ ∅) | |
17 | en0 8878 | . . . . 5 ⊢ (2o ≈ ∅ ↔ 2o = ∅) | |
18 | 16, 17 | bitri 274 | . . . 4 ⊢ (∅ ≈ 2o ↔ 2o = ∅) |
19 | 15, 18 | nemtbir 3037 | . . 3 ⊢ ¬ ∅ ≈ 2o |
20 | snprc 4665 | . . . . 5 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
21 | 20 | biimpi 215 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
22 | 21 | breq1d 5102 | . . 3 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ≈ 2o ↔ ∅ ≈ 2o)) |
23 | 19, 22 | mtbiri 326 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ≈ 2o) |
24 | 14, 23 | pm2.61i 182 | 1 ⊢ ¬ {𝐴} ≈ 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∅c0 4269 {csn 4573 class class class wbr 5092 suc csuc 6304 ωcom 7780 1oc1o 8360 2oc2o 8361 ≈ cen 8801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-om 7781 df-1o 8367 df-2o 8368 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |