MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnen2oOLD Structured version   Visualization version   GIF version

Theorem snnen2oOLD 9178
Description: Obsolete version of snnen2o 9188 as of 18-Nov-2024. (Contributed by AV, 6-Aug-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snnen2oOLD ¬ {𝐴} ≈ 2o

Proof of Theorem snnen2oOLD
StepHypRef Expression
1 1onn 8591 . . . 4 1o ∈ ω
2 php5 9165 . . . 4 (1o ∈ ω → ¬ 1o ≈ suc 1o)
31, 2ax-mp 5 . . 3 ¬ 1o ≈ suc 1o
4 ensn1g 8970 . . 3 (𝐴 ∈ V → {𝐴} ≈ 1o)
5 df-2o 8418 . . . . . 6 2o = suc 1o
65eqcomi 2746 . . . . 5 suc 1o = 2o
76breq2i 5118 . . . 4 (1o ≈ suc 1o ↔ 1o ≈ 2o)
8 ensymb 8949 . . . . . 6 ({𝐴} ≈ 1o ↔ 1o ≈ {𝐴})
9 entr 8953 . . . . . . 7 ((1o ≈ {𝐴} ∧ {𝐴} ≈ 2o) → 1o ≈ 2o)
109ex 414 . . . . . 6 (1o ≈ {𝐴} → ({𝐴} ≈ 2o → 1o ≈ 2o))
118, 10sylbi 216 . . . . 5 ({𝐴} ≈ 1o → ({𝐴} ≈ 2o → 1o ≈ 2o))
1211con3rr3 155 . . . 4 (¬ 1o ≈ 2o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o))
137, 12sylnbi 330 . . 3 (¬ 1o ≈ suc 1o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o))
143, 4, 13mpsyl 68 . 2 (𝐴 ∈ V → ¬ {𝐴} ≈ 2o)
15 2on0 8433 . . . 4 2o ≠ ∅
16 ensymb 8949 . . . . 5 (∅ ≈ 2o ↔ 2o ≈ ∅)
17 en0 8964 . . . . 5 (2o ≈ ∅ ↔ 2o = ∅)
1816, 17bitri 275 . . . 4 (∅ ≈ 2o ↔ 2o = ∅)
1915, 18nemtbir 3041 . . 3 ¬ ∅ ≈ 2o
20 snprc 4683 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
2120biimpi 215 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
2221breq1d 5120 . . 3 𝐴 ∈ V → ({𝐴} ≈ 2o ↔ ∅ ≈ 2o))
2319, 22mtbiri 327 . 2 𝐴 ∈ V → ¬ {𝐴} ≈ 2o)
2414, 23pm2.61i 182 1 ¬ {𝐴} ≈ 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wcel 2107  Vcvv 3448  c0 4287  {csn 4591   class class class wbr 5110  suc csuc 6324  ωcom 7807  1oc1o 8410  2oc2o 8411  cen 8887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-om 7808  df-1o 8417  df-2o 8418  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator