MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otsndisj Structured version   Visualization version   GIF version

Theorem otsndisj 5432
Description: The singletons consisting of ordered triples which have distinct third components are disjoint. (Contributed by Alexander van der Vekens, 10-Mar-2018.)
Assertion
Ref Expression
otsndisj ((𝐴𝑋𝐵𝑌) → Disj 𝑐𝑉 {⟨𝐴, 𝐵, 𝑐⟩})
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝑉,𝑐   𝑋,𝑐   𝑌,𝑐

Proof of Theorem otsndisj
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 otthg 5399 . . . . . . . . . . . 12 ((𝐴𝑋𝐵𝑌𝑐𝑉) → (⟨𝐴, 𝐵, 𝑐⟩ = ⟨𝐴, 𝐵, 𝑑⟩ ↔ (𝐴 = 𝐴𝐵 = 𝐵𝑐 = 𝑑)))
213expa 1117 . . . . . . . . . . 11 (((𝐴𝑋𝐵𝑌) ∧ 𝑐𝑉) → (⟨𝐴, 𝐵, 𝑐⟩ = ⟨𝐴, 𝐵, 𝑑⟩ ↔ (𝐴 = 𝐴𝐵 = 𝐵𝑐 = 𝑑)))
3 simp3 1137 . . . . . . . . . . 11 ((𝐴 = 𝐴𝐵 = 𝐵𝑐 = 𝑑) → 𝑐 = 𝑑)
42, 3syl6bi 252 . . . . . . . . . 10 (((𝐴𝑋𝐵𝑌) ∧ 𝑐𝑉) → (⟨𝐴, 𝐵, 𝑐⟩ = ⟨𝐴, 𝐵, 𝑑⟩ → 𝑐 = 𝑑))
54con3rr3 155 . . . . . . . . 9 𝑐 = 𝑑 → (((𝐴𝑋𝐵𝑌) ∧ 𝑐𝑉) → ¬ ⟨𝐴, 𝐵, 𝑐⟩ = ⟨𝐴, 𝐵, 𝑑⟩))
65imp 407 . . . . . . . 8 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ 𝑐𝑉)) → ¬ ⟨𝐴, 𝐵, 𝑐⟩ = ⟨𝐴, 𝐵, 𝑑⟩)
76neqned 2950 . . . . . . 7 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ 𝑐𝑉)) → ⟨𝐴, 𝐵, 𝑐⟩ ≠ ⟨𝐴, 𝐵, 𝑑⟩)
8 disjsn2 4649 . . . . . . 7 (⟨𝐴, 𝐵, 𝑐⟩ ≠ ⟨𝐴, 𝐵, 𝑑⟩ → ({⟨𝐴, 𝐵, 𝑐⟩} ∩ {⟨𝐴, 𝐵, 𝑑⟩}) = ∅)
97, 8syl 17 . . . . . 6 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ 𝑐𝑉)) → ({⟨𝐴, 𝐵, 𝑐⟩} ∩ {⟨𝐴, 𝐵, 𝑑⟩}) = ∅)
109expcom 414 . . . . 5 (((𝐴𝑋𝐵𝑌) ∧ 𝑐𝑉) → (¬ 𝑐 = 𝑑 → ({⟨𝐴, 𝐵, 𝑐⟩} ∩ {⟨𝐴, 𝐵, 𝑑⟩}) = ∅))
1110orrd 860 . . . 4 (((𝐴𝑋𝐵𝑌) ∧ 𝑐𝑉) → (𝑐 = 𝑑 ∨ ({⟨𝐴, 𝐵, 𝑐⟩} ∩ {⟨𝐴, 𝐵, 𝑑⟩}) = ∅))
1211adantrr 714 . . 3 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑉𝑑𝑉)) → (𝑐 = 𝑑 ∨ ({⟨𝐴, 𝐵, 𝑐⟩} ∩ {⟨𝐴, 𝐵, 𝑑⟩}) = ∅))
1312ralrimivva 3120 . 2 ((𝐴𝑋𝐵𝑌) → ∀𝑐𝑉𝑑𝑉 (𝑐 = 𝑑 ∨ ({⟨𝐴, 𝐵, 𝑐⟩} ∩ {⟨𝐴, 𝐵, 𝑑⟩}) = ∅))
14 oteq3 4816 . . . 4 (𝑐 = 𝑑 → ⟨𝐴, 𝐵, 𝑐⟩ = ⟨𝐴, 𝐵, 𝑑⟩)
1514sneqd 4574 . . 3 (𝑐 = 𝑑 → {⟨𝐴, 𝐵, 𝑐⟩} = {⟨𝐴, 𝐵, 𝑑⟩})
1615disjor 5054 . 2 (Disj 𝑐𝑉 {⟨𝐴, 𝐵, 𝑐⟩} ↔ ∀𝑐𝑉𝑑𝑉 (𝑐 = 𝑑 ∨ ({⟨𝐴, 𝐵, 𝑐⟩} ∩ {⟨𝐴, 𝐵, 𝑑⟩}) = ∅))
1713, 16sylibr 233 1 ((𝐴𝑋𝐵𝑌) → Disj 𝑐𝑉 {⟨𝐴, 𝐵, 𝑐⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  cin 3886  c0 4257  {csn 4562  cotp 4570  Disj wdisj 5039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pr 5351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rmo 3072  df-rab 3073  df-v 3432  df-dif 3890  df-un 3892  df-in 3894  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-ot 4571  df-disj 5040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator