MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otsndisj Structured version   Visualization version   GIF version

Theorem otsndisj 5519
Description: The singletons consisting of ordered triples which have distinct third components are disjoint. (Contributed by Alexander van der Vekens, 10-Mar-2018.)
Assertion
Ref Expression
otsndisj ((𝐴𝑋𝐵𝑌) → Disj 𝑐𝑉 {⟨𝐴, 𝐵, 𝑐⟩})
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝑉,𝑐   𝑋,𝑐   𝑌,𝑐

Proof of Theorem otsndisj
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 otthg 5485 . . . . . . . . . . . 12 ((𝐴𝑋𝐵𝑌𝑐𝑉) → (⟨𝐴, 𝐵, 𝑐⟩ = ⟨𝐴, 𝐵, 𝑑⟩ ↔ (𝐴 = 𝐴𝐵 = 𝐵𝑐 = 𝑑)))
213expa 1118 . . . . . . . . . . 11 (((𝐴𝑋𝐵𝑌) ∧ 𝑐𝑉) → (⟨𝐴, 𝐵, 𝑐⟩ = ⟨𝐴, 𝐵, 𝑑⟩ ↔ (𝐴 = 𝐴𝐵 = 𝐵𝑐 = 𝑑)))
3 simp3 1138 . . . . . . . . . . 11 ((𝐴 = 𝐴𝐵 = 𝐵𝑐 = 𝑑) → 𝑐 = 𝑑)
42, 3syl6bi 252 . . . . . . . . . 10 (((𝐴𝑋𝐵𝑌) ∧ 𝑐𝑉) → (⟨𝐴, 𝐵, 𝑐⟩ = ⟨𝐴, 𝐵, 𝑑⟩ → 𝑐 = 𝑑))
54con3rr3 155 . . . . . . . . 9 𝑐 = 𝑑 → (((𝐴𝑋𝐵𝑌) ∧ 𝑐𝑉) → ¬ ⟨𝐴, 𝐵, 𝑐⟩ = ⟨𝐴, 𝐵, 𝑑⟩))
65imp 407 . . . . . . . 8 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ 𝑐𝑉)) → ¬ ⟨𝐴, 𝐵, 𝑐⟩ = ⟨𝐴, 𝐵, 𝑑⟩)
76neqned 2947 . . . . . . 7 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ 𝑐𝑉)) → ⟨𝐴, 𝐵, 𝑐⟩ ≠ ⟨𝐴, 𝐵, 𝑑⟩)
8 disjsn2 4716 . . . . . . 7 (⟨𝐴, 𝐵, 𝑐⟩ ≠ ⟨𝐴, 𝐵, 𝑑⟩ → ({⟨𝐴, 𝐵, 𝑐⟩} ∩ {⟨𝐴, 𝐵, 𝑑⟩}) = ∅)
97, 8syl 17 . . . . . 6 ((¬ 𝑐 = 𝑑 ∧ ((𝐴𝑋𝐵𝑌) ∧ 𝑐𝑉)) → ({⟨𝐴, 𝐵, 𝑐⟩} ∩ {⟨𝐴, 𝐵, 𝑑⟩}) = ∅)
109expcom 414 . . . . 5 (((𝐴𝑋𝐵𝑌) ∧ 𝑐𝑉) → (¬ 𝑐 = 𝑑 → ({⟨𝐴, 𝐵, 𝑐⟩} ∩ {⟨𝐴, 𝐵, 𝑑⟩}) = ∅))
1110orrd 861 . . . 4 (((𝐴𝑋𝐵𝑌) ∧ 𝑐𝑉) → (𝑐 = 𝑑 ∨ ({⟨𝐴, 𝐵, 𝑐⟩} ∩ {⟨𝐴, 𝐵, 𝑑⟩}) = ∅))
1211adantrr 715 . . 3 (((𝐴𝑋𝐵𝑌) ∧ (𝑐𝑉𝑑𝑉)) → (𝑐 = 𝑑 ∨ ({⟨𝐴, 𝐵, 𝑐⟩} ∩ {⟨𝐴, 𝐵, 𝑑⟩}) = ∅))
1312ralrimivva 3200 . 2 ((𝐴𝑋𝐵𝑌) → ∀𝑐𝑉𝑑𝑉 (𝑐 = 𝑑 ∨ ({⟨𝐴, 𝐵, 𝑐⟩} ∩ {⟨𝐴, 𝐵, 𝑑⟩}) = ∅))
14 oteq3 4884 . . . 4 (𝑐 = 𝑑 → ⟨𝐴, 𝐵, 𝑐⟩ = ⟨𝐴, 𝐵, 𝑑⟩)
1514sneqd 4640 . . 3 (𝑐 = 𝑑 → {⟨𝐴, 𝐵, 𝑐⟩} = {⟨𝐴, 𝐵, 𝑑⟩})
1615disjor 5128 . 2 (Disj 𝑐𝑉 {⟨𝐴, 𝐵, 𝑐⟩} ↔ ∀𝑐𝑉𝑑𝑉 (𝑐 = 𝑑 ∨ ({⟨𝐴, 𝐵, 𝑐⟩} ∩ {⟨𝐴, 𝐵, 𝑑⟩}) = ∅))
1713, 16sylibr 233 1 ((𝐴𝑋𝐵𝑌) → Disj 𝑐𝑉 {⟨𝐴, 𝐵, 𝑐⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  cin 3947  c0 4322  {csn 4628  cotp 4636  Disj wdisj 5113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rmo 3376  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-ot 4637  df-disj 5114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator