MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeofval Structured version   Visualization version   GIF version

Theorem hmeofval 23668
Description: The set of all the homeomorphisms between two topologies. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmeofval (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)}
Distinct variable groups:   𝑓,𝐽   𝑓,𝐾

Proof of Theorem hmeofval
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7350 . . . 4 ((𝑗 = 𝐽𝑘 = 𝐾) → (𝑗 Cn 𝑘) = (𝐽 Cn 𝐾))
2 oveq12 7350 . . . . . 6 ((𝑘 = 𝐾𝑗 = 𝐽) → (𝑘 Cn 𝑗) = (𝐾 Cn 𝐽))
32ancoms 458 . . . . 5 ((𝑗 = 𝐽𝑘 = 𝐾) → (𝑘 Cn 𝑗) = (𝐾 Cn 𝐽))
43eleq2d 2817 . . . 4 ((𝑗 = 𝐽𝑘 = 𝐾) → (𝑓 ∈ (𝑘 Cn 𝑗) ↔ 𝑓 ∈ (𝐾 Cn 𝐽)))
51, 4rabeqbidv 3413 . . 3 ((𝑗 = 𝐽𝑘 = 𝐾) → {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)} = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)})
6 df-hmeo 23665 . . 3 Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)})
7 ovex 7374 . . . 4 (𝐽 Cn 𝐾) ∈ V
87rabex 5272 . . 3 {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)} ∈ V
95, 6, 8ovmpoa 7496 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)})
106mpondm0 7581 . . 3 (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = ∅)
11 cntop1 23150 . . . . . . . 8 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
12 cntop2 23151 . . . . . . . 8 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
1311, 12jca 511 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
1413a1d 25 . . . . . 6 (𝑓 ∈ (𝐽 Cn 𝐾) → (𝑓 ∈ (𝐾 Cn 𝐽) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)))
1514con3rr3 155 . . . . 5 (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑓 ∈ (𝐽 Cn 𝐾) → ¬ 𝑓 ∈ (𝐾 Cn 𝐽)))
1615ralrimiv 3123 . . . 4 (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ∀𝑓 ∈ (𝐽 Cn 𝐾) ¬ 𝑓 ∈ (𝐾 Cn 𝐽))
17 rabeq0 4333 . . . 4 ({𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)} = ∅ ↔ ∀𝑓 ∈ (𝐽 Cn 𝐾) ¬ 𝑓 ∈ (𝐾 Cn 𝐽))
1816, 17sylibr 234 . . 3 (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)} = ∅)
1910, 18eqtr4d 2769 . 2 (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)})
209, 19pm2.61i 182 1 (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  c0 4278  ccnv 5610  (class class class)co 7341  Topctop 22803   Cn ccn 23134  Homeochmeo 23663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8747  df-top 22804  df-topon 22821  df-cn 23137  df-hmeo 23665
This theorem is referenced by:  ishmeo  23669
  Copyright terms: Public domain W3C validator