| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmeofval | Structured version Visualization version GIF version | ||
| Description: The set of all the homeomorphisms between two topologies. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmeofval | ⊢ (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 7399 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑘 = 𝐾) → (𝑗 Cn 𝑘) = (𝐽 Cn 𝐾)) | |
| 2 | oveq12 7399 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑗 = 𝐽) → (𝑘 Cn 𝑗) = (𝐾 Cn 𝐽)) | |
| 3 | 2 | ancoms 458 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑘 = 𝐾) → (𝑘 Cn 𝑗) = (𝐾 Cn 𝐽)) |
| 4 | 3 | eleq2d 2815 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑘 = 𝐾) → (◡𝑓 ∈ (𝑘 Cn 𝑗) ↔ ◡𝑓 ∈ (𝐾 Cn 𝐽))) |
| 5 | 1, 4 | rabeqbidv 3427 | . . 3 ⊢ ((𝑗 = 𝐽 ∧ 𝑘 = 𝐾) → {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)} = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)}) |
| 6 | df-hmeo 23649 | . . 3 ⊢ Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)}) | |
| 7 | ovex 7423 | . . . 4 ⊢ (𝐽 Cn 𝐾) ∈ V | |
| 8 | 7 | rabex 5297 | . . 3 ⊢ {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} ∈ V |
| 9 | 5, 6, 8 | ovmpoa 7547 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)}) |
| 10 | 6 | mpondm0 7632 | . . 3 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = ∅) |
| 11 | cntop1 23134 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 12 | cntop2 23135 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 13 | 11, 12 | jca 511 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
| 14 | 13 | a1d 25 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → (◡𝑓 ∈ (𝐾 Cn 𝐽) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))) |
| 15 | 14 | con3rr3 155 | . . . . 5 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑓 ∈ (𝐽 Cn 𝐾) → ¬ ◡𝑓 ∈ (𝐾 Cn 𝐽))) |
| 16 | 15 | ralrimiv 3125 | . . . 4 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ∀𝑓 ∈ (𝐽 Cn 𝐾) ¬ ◡𝑓 ∈ (𝐾 Cn 𝐽)) |
| 17 | rabeq0 4354 | . . . 4 ⊢ ({𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} = ∅ ↔ ∀𝑓 ∈ (𝐽 Cn 𝐾) ¬ ◡𝑓 ∈ (𝐾 Cn 𝐽)) | |
| 18 | 16, 17 | sylibr 234 | . . 3 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} = ∅) |
| 19 | 10, 18 | eqtr4d 2768 | . 2 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)}) |
| 20 | 9, 19 | pm2.61i 182 | 1 ⊢ (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ∅c0 4299 ◡ccnv 5640 (class class class)co 7390 Topctop 22787 Cn ccn 23118 Homeochmeo 23647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-top 22788 df-topon 22805 df-cn 23121 df-hmeo 23649 |
| This theorem is referenced by: ishmeo 23653 |
| Copyright terms: Public domain | W3C validator |