![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmeofval | Structured version Visualization version GIF version |
Description: The set of all the homeomorphisms between two topologies. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
hmeofval | ⊢ (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 6979 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑘 = 𝐾) → (𝑗 Cn 𝑘) = (𝐽 Cn 𝐾)) | |
2 | oveq12 6979 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑗 = 𝐽) → (𝑘 Cn 𝑗) = (𝐾 Cn 𝐽)) | |
3 | 2 | ancoms 451 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑘 = 𝐾) → (𝑘 Cn 𝑗) = (𝐾 Cn 𝐽)) |
4 | 3 | eleq2d 2845 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑘 = 𝐾) → (◡𝑓 ∈ (𝑘 Cn 𝑗) ↔ ◡𝑓 ∈ (𝐾 Cn 𝐽))) |
5 | 1, 4 | rabeqbidv 3402 | . . 3 ⊢ ((𝑗 = 𝐽 ∧ 𝑘 = 𝐾) → {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)} = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)}) |
6 | df-hmeo 22057 | . . 3 ⊢ Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)}) | |
7 | ovex 7002 | . . . 4 ⊢ (𝐽 Cn 𝐾) ∈ V | |
8 | 7 | rabex 5085 | . . 3 ⊢ {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} ∈ V |
9 | 5, 6, 8 | ovmpoa 7115 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)}) |
10 | 6 | mpondm0 7199 | . . 3 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = ∅) |
11 | cntop1 21542 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
12 | cntop2 21543 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
13 | 11, 12 | jca 504 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
14 | 13 | a1d 25 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → (◡𝑓 ∈ (𝐾 Cn 𝐽) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))) |
15 | 14 | con3rr3 153 | . . . . 5 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑓 ∈ (𝐽 Cn 𝐾) → ¬ ◡𝑓 ∈ (𝐾 Cn 𝐽))) |
16 | 15 | ralrimiv 3125 | . . . 4 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ∀𝑓 ∈ (𝐽 Cn 𝐾) ¬ ◡𝑓 ∈ (𝐾 Cn 𝐽)) |
17 | rabeq0 4219 | . . . 4 ⊢ ({𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} = ∅ ↔ ∀𝑓 ∈ (𝐽 Cn 𝐾) ¬ ◡𝑓 ∈ (𝐾 Cn 𝐽)) | |
18 | 16, 17 | sylibr 226 | . . 3 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} = ∅) |
19 | 10, 18 | eqtr4d 2811 | . 2 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)}) |
20 | 9, 19 | pm2.61i 177 | 1 ⊢ (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ∀wral 3082 {crab 3086 ∅c0 4173 ◡ccnv 5399 (class class class)co 6970 Topctop 21195 Cn ccn 21526 Homeochmeo 22055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3678 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-fv 6190 df-ov 6973 df-oprab 6974 df-mpo 6975 df-map 8200 df-top 21196 df-topon 21213 df-cn 21529 df-hmeo 22057 |
This theorem is referenced by: ishmeo 22061 |
Copyright terms: Public domain | W3C validator |