![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmeofval | Structured version Visualization version GIF version |
Description: The set of all the homeomorphisms between two topologies. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
hmeofval | ⊢ (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7457 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑘 = 𝐾) → (𝑗 Cn 𝑘) = (𝐽 Cn 𝐾)) | |
2 | oveq12 7457 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑗 = 𝐽) → (𝑘 Cn 𝑗) = (𝐾 Cn 𝐽)) | |
3 | 2 | ancoms 458 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑘 = 𝐾) → (𝑘 Cn 𝑗) = (𝐾 Cn 𝐽)) |
4 | 3 | eleq2d 2830 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑘 = 𝐾) → (◡𝑓 ∈ (𝑘 Cn 𝑗) ↔ ◡𝑓 ∈ (𝐾 Cn 𝐽))) |
5 | 1, 4 | rabeqbidv 3462 | . . 3 ⊢ ((𝑗 = 𝐽 ∧ 𝑘 = 𝐾) → {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)} = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)}) |
6 | df-hmeo 23784 | . . 3 ⊢ Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)}) | |
7 | ovex 7481 | . . . 4 ⊢ (𝐽 Cn 𝐾) ∈ V | |
8 | 7 | rabex 5357 | . . 3 ⊢ {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} ∈ V |
9 | 5, 6, 8 | ovmpoa 7605 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)}) |
10 | 6 | mpondm0 7690 | . . 3 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = ∅) |
11 | cntop1 23269 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
12 | cntop2 23270 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
13 | 11, 12 | jca 511 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
14 | 13 | a1d 25 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → (◡𝑓 ∈ (𝐾 Cn 𝐽) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))) |
15 | 14 | con3rr3 155 | . . . . 5 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑓 ∈ (𝐽 Cn 𝐾) → ¬ ◡𝑓 ∈ (𝐾 Cn 𝐽))) |
16 | 15 | ralrimiv 3151 | . . . 4 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ∀𝑓 ∈ (𝐽 Cn 𝐾) ¬ ◡𝑓 ∈ (𝐾 Cn 𝐽)) |
17 | rabeq0 4411 | . . . 4 ⊢ ({𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} = ∅ ↔ ∀𝑓 ∈ (𝐽 Cn 𝐾) ¬ ◡𝑓 ∈ (𝐾 Cn 𝐽)) | |
18 | 16, 17 | sylibr 234 | . . 3 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} = ∅) |
19 | 10, 18 | eqtr4d 2783 | . 2 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)}) |
20 | 9, 19 | pm2.61i 182 | 1 ⊢ (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ∅c0 4352 ◡ccnv 5699 (class class class)co 7448 Topctop 22920 Cn ccn 23253 Homeochmeo 23782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-top 22921 df-topon 22938 df-cn 23256 df-hmeo 23784 |
This theorem is referenced by: ishmeo 23788 |
Copyright terms: Public domain | W3C validator |