![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmeofval | Structured version Visualization version GIF version |
Description: The set of all the homeomorphisms between two topologies. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
hmeofval | ⊢ (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7410 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑘 = 𝐾) → (𝑗 Cn 𝑘) = (𝐽 Cn 𝐾)) | |
2 | oveq12 7410 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑗 = 𝐽) → (𝑘 Cn 𝑗) = (𝐾 Cn 𝐽)) | |
3 | 2 | ancoms 458 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑘 = 𝐾) → (𝑘 Cn 𝑗) = (𝐾 Cn 𝐽)) |
4 | 3 | eleq2d 2811 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑘 = 𝐾) → (◡𝑓 ∈ (𝑘 Cn 𝑗) ↔ ◡𝑓 ∈ (𝐾 Cn 𝐽))) |
5 | 1, 4 | rabeqbidv 3441 | . . 3 ⊢ ((𝑗 = 𝐽 ∧ 𝑘 = 𝐾) → {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)} = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)}) |
6 | df-hmeo 23581 | . . 3 ⊢ Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)}) | |
7 | ovex 7434 | . . . 4 ⊢ (𝐽 Cn 𝐾) ∈ V | |
8 | 7 | rabex 5322 | . . 3 ⊢ {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} ∈ V |
9 | 5, 6, 8 | ovmpoa 7555 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)}) |
10 | 6 | mpondm0 7640 | . . 3 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = ∅) |
11 | cntop1 23066 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
12 | cntop2 23067 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
13 | 11, 12 | jca 511 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
14 | 13 | a1d 25 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → (◡𝑓 ∈ (𝐾 Cn 𝐽) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))) |
15 | 14 | con3rr3 155 | . . . . 5 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑓 ∈ (𝐽 Cn 𝐾) → ¬ ◡𝑓 ∈ (𝐾 Cn 𝐽))) |
16 | 15 | ralrimiv 3137 | . . . 4 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ∀𝑓 ∈ (𝐽 Cn 𝐾) ¬ ◡𝑓 ∈ (𝐾 Cn 𝐽)) |
17 | rabeq0 4376 | . . . 4 ⊢ ({𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} = ∅ ↔ ∀𝑓 ∈ (𝐽 Cn 𝐾) ¬ ◡𝑓 ∈ (𝐾 Cn 𝐽)) | |
18 | 16, 17 | sylibr 233 | . . 3 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} = ∅) |
19 | 10, 18 | eqtr4d 2767 | . 2 ⊢ (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)}) |
20 | 9, 19 | pm2.61i 182 | 1 ⊢ (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 {crab 3424 ∅c0 4314 ◡ccnv 5665 (class class class)co 7401 Topctop 22717 Cn ccn 23050 Homeochmeo 23579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-map 8818 df-top 22718 df-topon 22735 df-cn 23053 df-hmeo 23581 |
This theorem is referenced by: ishmeo 23585 |
Copyright terms: Public domain | W3C validator |