MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeofval Structured version   Visualization version   GIF version

Theorem hmeofval 23766
Description: The set of all the homeomorphisms between two topologies. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmeofval (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)}
Distinct variable groups:   𝑓,𝐽   𝑓,𝐾

Proof of Theorem hmeofval
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7440 . . . 4 ((𝑗 = 𝐽𝑘 = 𝐾) → (𝑗 Cn 𝑘) = (𝐽 Cn 𝐾))
2 oveq12 7440 . . . . . 6 ((𝑘 = 𝐾𝑗 = 𝐽) → (𝑘 Cn 𝑗) = (𝐾 Cn 𝐽))
32ancoms 458 . . . . 5 ((𝑗 = 𝐽𝑘 = 𝐾) → (𝑘 Cn 𝑗) = (𝐾 Cn 𝐽))
43eleq2d 2827 . . . 4 ((𝑗 = 𝐽𝑘 = 𝐾) → (𝑓 ∈ (𝑘 Cn 𝑗) ↔ 𝑓 ∈ (𝐾 Cn 𝐽)))
51, 4rabeqbidv 3455 . . 3 ((𝑗 = 𝐽𝑘 = 𝐾) → {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)} = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)})
6 df-hmeo 23763 . . 3 Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)})
7 ovex 7464 . . . 4 (𝐽 Cn 𝐾) ∈ V
87rabex 5339 . . 3 {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)} ∈ V
95, 6, 8ovmpoa 7588 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)})
106mpondm0 7673 . . 3 (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = ∅)
11 cntop1 23248 . . . . . . . 8 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
12 cntop2 23249 . . . . . . . 8 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
1311, 12jca 511 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
1413a1d 25 . . . . . 6 (𝑓 ∈ (𝐽 Cn 𝐾) → (𝑓 ∈ (𝐾 Cn 𝐽) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)))
1514con3rr3 155 . . . . 5 (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑓 ∈ (𝐽 Cn 𝐾) → ¬ 𝑓 ∈ (𝐾 Cn 𝐽)))
1615ralrimiv 3145 . . . 4 (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ∀𝑓 ∈ (𝐽 Cn 𝐾) ¬ 𝑓 ∈ (𝐾 Cn 𝐽))
17 rabeq0 4388 . . . 4 ({𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)} = ∅ ↔ ∀𝑓 ∈ (𝐽 Cn 𝐾) ¬ 𝑓 ∈ (𝐾 Cn 𝐽))
1816, 17sylibr 234 . . 3 (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)} = ∅)
1910, 18eqtr4d 2780 . 2 (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)})
209, 19pm2.61i 182 1 (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2108  wral 3061  {crab 3436  c0 4333  ccnv 5684  (class class class)co 7431  Topctop 22899   Cn ccn 23232  Homeochmeo 23761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-top 22900  df-topon 22917  df-cn 23235  df-hmeo 23763
This theorem is referenced by:  ishmeo  23767
  Copyright terms: Public domain W3C validator