MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeofval Structured version   Visualization version   GIF version

Theorem hmeofval 23652
Description: The set of all the homeomorphisms between two topologies. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmeofval (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)}
Distinct variable groups:   𝑓,𝐽   𝑓,𝐾

Proof of Theorem hmeofval
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7399 . . . 4 ((𝑗 = 𝐽𝑘 = 𝐾) → (𝑗 Cn 𝑘) = (𝐽 Cn 𝐾))
2 oveq12 7399 . . . . . 6 ((𝑘 = 𝐾𝑗 = 𝐽) → (𝑘 Cn 𝑗) = (𝐾 Cn 𝐽))
32ancoms 458 . . . . 5 ((𝑗 = 𝐽𝑘 = 𝐾) → (𝑘 Cn 𝑗) = (𝐾 Cn 𝐽))
43eleq2d 2815 . . . 4 ((𝑗 = 𝐽𝑘 = 𝐾) → (𝑓 ∈ (𝑘 Cn 𝑗) ↔ 𝑓 ∈ (𝐾 Cn 𝐽)))
51, 4rabeqbidv 3427 . . 3 ((𝑗 = 𝐽𝑘 = 𝐾) → {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)} = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)})
6 df-hmeo 23649 . . 3 Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)})
7 ovex 7423 . . . 4 (𝐽 Cn 𝐾) ∈ V
87rabex 5297 . . 3 {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)} ∈ V
95, 6, 8ovmpoa 7547 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)})
106mpondm0 7632 . . 3 (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = ∅)
11 cntop1 23134 . . . . . . . 8 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
12 cntop2 23135 . . . . . . . 8 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
1311, 12jca 511 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
1413a1d 25 . . . . . 6 (𝑓 ∈ (𝐽 Cn 𝐾) → (𝑓 ∈ (𝐾 Cn 𝐽) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)))
1514con3rr3 155 . . . . 5 (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑓 ∈ (𝐽 Cn 𝐾) → ¬ 𝑓 ∈ (𝐾 Cn 𝐽)))
1615ralrimiv 3125 . . . 4 (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ∀𝑓 ∈ (𝐽 Cn 𝐾) ¬ 𝑓 ∈ (𝐾 Cn 𝐽))
17 rabeq0 4354 . . . 4 ({𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)} = ∅ ↔ ∀𝑓 ∈ (𝐽 Cn 𝐾) ¬ 𝑓 ∈ (𝐾 Cn 𝐽))
1816, 17sylibr 234 . . 3 (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)} = ∅)
1910, 18eqtr4d 2768 . 2 (¬ (𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)})
209, 19pm2.61i 182 1 (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  c0 4299  ccnv 5640  (class class class)co 7390  Topctop 22787   Cn ccn 23118  Homeochmeo 23647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-top 22788  df-topon 22805  df-cn 23121  df-hmeo 23649
This theorem is referenced by:  ishmeo  23653
  Copyright terms: Public domain W3C validator