Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wrdnfi | Structured version Visualization version GIF version |
Description: If there is only a finite number of symbols, the number of words of a fixed length over these symbols is also finite. (Contributed by Alexander van der Vekens, 25-Mar-2018.) Remove unnecessary antecedent. (Revised by JJ, 18-Nov-2022.) |
Ref | Expression |
---|---|
wrdnfi | ⊢ (𝑉 ∈ Fin → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashwrdn 14342 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0) → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) = ((♯‘𝑉)↑𝑁)) | |
2 | hashcl 14163 | . . . . . 6 ⊢ (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0) | |
3 | nn0expcl 13889 | . . . . . 6 ⊢ (((♯‘𝑉) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑉)↑𝑁) ∈ ℕ0) | |
4 | 2, 3 | sylan 580 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑉)↑𝑁) ∈ ℕ0) |
5 | 1, 4 | eqeltrd 2837 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0) → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0) |
6 | 5 | ex 413 | . . 3 ⊢ (𝑉 ∈ Fin → (𝑁 ∈ ℕ0 → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0)) |
7 | lencl 14328 | . . . . . . . . . 10 ⊢ (𝑤 ∈ Word 𝑉 → (♯‘𝑤) ∈ ℕ0) | |
8 | eleq1 2824 | . . . . . . . . . 10 ⊢ ((♯‘𝑤) = 𝑁 → ((♯‘𝑤) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
9 | 7, 8 | syl5ibcom 244 | . . . . . . . . 9 ⊢ (𝑤 ∈ Word 𝑉 → ((♯‘𝑤) = 𝑁 → 𝑁 ∈ ℕ0)) |
10 | 9 | con3rr3 155 | . . . . . . . 8 ⊢ (¬ 𝑁 ∈ ℕ0 → (𝑤 ∈ Word 𝑉 → ¬ (♯‘𝑤) = 𝑁)) |
11 | 10 | ralrimiv 3138 | . . . . . . 7 ⊢ (¬ 𝑁 ∈ ℕ0 → ∀𝑤 ∈ Word 𝑉 ¬ (♯‘𝑤) = 𝑁) |
12 | rabeq0 4330 | . . . . . . 7 ⊢ ({𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = ∅ ↔ ∀𝑤 ∈ Word 𝑉 ¬ (♯‘𝑤) = 𝑁) | |
13 | 11, 12 | sylibr 233 | . . . . . 6 ⊢ (¬ 𝑁 ∈ ℕ0 → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = ∅) |
14 | 13 | fveq2d 6823 | . . . . 5 ⊢ (¬ 𝑁 ∈ ℕ0 → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) = (♯‘∅)) |
15 | hash0 14174 | . . . . 5 ⊢ (♯‘∅) = 0 | |
16 | 14, 15 | eqtrdi 2792 | . . . 4 ⊢ (¬ 𝑁 ∈ ℕ0 → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) = 0) |
17 | 0nn0 12341 | . . . 4 ⊢ 0 ∈ ℕ0 | |
18 | 16, 17 | eqeltrdi 2845 | . . 3 ⊢ (¬ 𝑁 ∈ ℕ0 → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0) |
19 | 6, 18 | pm2.61d1 180 | . 2 ⊢ (𝑉 ∈ Fin → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0) |
20 | wrdexg 14319 | . . 3 ⊢ (𝑉 ∈ Fin → Word 𝑉 ∈ V) | |
21 | rabexg 5272 | . . 3 ⊢ (Word 𝑉 ∈ V → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ V) | |
22 | hashclb 14165 | . . 3 ⊢ ({𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ V → ({𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ Fin ↔ (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0)) | |
23 | 20, 21, 22 | 3syl 18 | . 2 ⊢ (𝑉 ∈ Fin → ({𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ Fin ↔ (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0)) |
24 | 19, 23 | mpbird 256 | 1 ⊢ (𝑉 ∈ Fin → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 {crab 3403 Vcvv 3441 ∅c0 4268 ‘cfv 6473 (class class class)co 7329 Fincfn 8796 0cc0 10964 ℕ0cn0 12326 ↑cexp 13875 ♯chash 14137 Word cword 14309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-oadd 8363 df-er 8561 df-map 8680 df-pm 8681 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-dju 9750 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-n0 12327 df-z 12413 df-uz 12676 df-fz 13333 df-fzo 13476 df-seq 13815 df-exp 13876 df-hash 14138 df-word 14310 |
This theorem is referenced by: wwlksnfi 28500 clwwlknfi 28638 |
Copyright terms: Public domain | W3C validator |