MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdnfi Structured version   Visualization version   GIF version

Theorem wrdnfi 14500
Description: If there is only a finite number of symbols, the number of words of a fixed length over these symbols is also finite. (Contributed by Alexander van der Vekens, 25-Mar-2018.) Remove unnecessary antecedent. (Revised by JJ, 18-Nov-2022.)
Assertion
Ref Expression
wrdnfi (𝑉 ∈ Fin → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ Fin)
Distinct variable groups:   𝑤,𝑁   𝑤,𝑉

Proof of Theorem wrdnfi
StepHypRef Expression
1 hashwrdn 14499 . . . . 5 ((𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0) → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) = ((♯‘𝑉)↑𝑁))
2 hashcl 14317 . . . . . 6 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
3 nn0expcl 14042 . . . . . 6 (((♯‘𝑉) ∈ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑉)↑𝑁) ∈ ℕ0)
42, 3sylan 579 . . . . 5 ((𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑉)↑𝑁) ∈ ℕ0)
51, 4eqeltrd 2825 . . . 4 ((𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0) → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0)
65ex 412 . . 3 (𝑉 ∈ Fin → (𝑁 ∈ ℕ0 → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0))
7 lencl 14485 . . . . . . . . . 10 (𝑤 ∈ Word 𝑉 → (♯‘𝑤) ∈ ℕ0)
8 eleq1 2813 . . . . . . . . . 10 ((♯‘𝑤) = 𝑁 → ((♯‘𝑤) ∈ ℕ0𝑁 ∈ ℕ0))
97, 8syl5ibcom 244 . . . . . . . . 9 (𝑤 ∈ Word 𝑉 → ((♯‘𝑤) = 𝑁𝑁 ∈ ℕ0))
109con3rr3 155 . . . . . . . 8 𝑁 ∈ ℕ0 → (𝑤 ∈ Word 𝑉 → ¬ (♯‘𝑤) = 𝑁))
1110ralrimiv 3137 . . . . . . 7 𝑁 ∈ ℕ0 → ∀𝑤 ∈ Word 𝑉 ¬ (♯‘𝑤) = 𝑁)
12 rabeq0 4377 . . . . . . 7 ({𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = ∅ ↔ ∀𝑤 ∈ Word 𝑉 ¬ (♯‘𝑤) = 𝑁)
1311, 12sylibr 233 . . . . . 6 𝑁 ∈ ℕ0 → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = ∅)
1413fveq2d 6886 . . . . 5 𝑁 ∈ ℕ0 → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) = (♯‘∅))
15 hash0 14328 . . . . 5 (♯‘∅) = 0
1614, 15eqtrdi 2780 . . . 4 𝑁 ∈ ℕ0 → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) = 0)
17 0nn0 12486 . . . 4 0 ∈ ℕ0
1816, 17eqeltrdi 2833 . . 3 𝑁 ∈ ℕ0 → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0)
196, 18pm2.61d1 180 . 2 (𝑉 ∈ Fin → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0)
20 wrdexg 14476 . . 3 (𝑉 ∈ Fin → Word 𝑉 ∈ V)
21 rabexg 5322 . . 3 (Word 𝑉 ∈ V → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ V)
22 hashclb 14319 . . 3 ({𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ V → ({𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ Fin ↔ (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0))
2320, 21, 223syl 18 . 2 (𝑉 ∈ Fin → ({𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ Fin ↔ (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0))
2419, 23mpbird 257 1 (𝑉 ∈ Fin → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wral 3053  {crab 3424  Vcvv 3466  c0 4315  cfv 6534  (class class class)co 7402  Fincfn 8936  0cc0 11107  0cn0 12471  cexp 14028  chash 14291  Word cword 14466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8700  df-map 8819  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-dju 9893  df-card 9931  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13486  df-fzo 13629  df-seq 13968  df-exp 14029  df-hash 14292  df-word 14467
This theorem is referenced by:  wwlksnfi  29655  clwwlknfi  29793  upwrdfi  46147
  Copyright terms: Public domain W3C validator