Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wrdnfi | Structured version Visualization version GIF version |
Description: If there is only a finite number of symbols, the number of words of a fixed length over these symbols is also finite. (Contributed by Alexander van der Vekens, 25-Mar-2018.) Remove unnecessary antecedent. (Revised by JJ, 18-Nov-2022.) |
Ref | Expression |
---|---|
wrdnfi | ⊢ (𝑉 ∈ Fin → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashwrdn 14250 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0) → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) = ((♯‘𝑉)↑𝑁)) | |
2 | hashcl 14071 | . . . . . 6 ⊢ (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0) | |
3 | nn0expcl 13796 | . . . . . 6 ⊢ (((♯‘𝑉) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑉)↑𝑁) ∈ ℕ0) | |
4 | 2, 3 | sylan 580 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑉)↑𝑁) ∈ ℕ0) |
5 | 1, 4 | eqeltrd 2839 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0) → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0) |
6 | 5 | ex 413 | . . 3 ⊢ (𝑉 ∈ Fin → (𝑁 ∈ ℕ0 → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0)) |
7 | lencl 14236 | . . . . . . . . . 10 ⊢ (𝑤 ∈ Word 𝑉 → (♯‘𝑤) ∈ ℕ0) | |
8 | eleq1 2826 | . . . . . . . . . 10 ⊢ ((♯‘𝑤) = 𝑁 → ((♯‘𝑤) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
9 | 7, 8 | syl5ibcom 244 | . . . . . . . . 9 ⊢ (𝑤 ∈ Word 𝑉 → ((♯‘𝑤) = 𝑁 → 𝑁 ∈ ℕ0)) |
10 | 9 | con3rr3 155 | . . . . . . . 8 ⊢ (¬ 𝑁 ∈ ℕ0 → (𝑤 ∈ Word 𝑉 → ¬ (♯‘𝑤) = 𝑁)) |
11 | 10 | ralrimiv 3102 | . . . . . . 7 ⊢ (¬ 𝑁 ∈ ℕ0 → ∀𝑤 ∈ Word 𝑉 ¬ (♯‘𝑤) = 𝑁) |
12 | rabeq0 4318 | . . . . . . 7 ⊢ ({𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = ∅ ↔ ∀𝑤 ∈ Word 𝑉 ¬ (♯‘𝑤) = 𝑁) | |
13 | 11, 12 | sylibr 233 | . . . . . 6 ⊢ (¬ 𝑁 ∈ ℕ0 → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = ∅) |
14 | 13 | fveq2d 6778 | . . . . 5 ⊢ (¬ 𝑁 ∈ ℕ0 → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) = (♯‘∅)) |
15 | hash0 14082 | . . . . 5 ⊢ (♯‘∅) = 0 | |
16 | 14, 15 | eqtrdi 2794 | . . . 4 ⊢ (¬ 𝑁 ∈ ℕ0 → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) = 0) |
17 | 0nn0 12248 | . . . 4 ⊢ 0 ∈ ℕ0 | |
18 | 16, 17 | eqeltrdi 2847 | . . 3 ⊢ (¬ 𝑁 ∈ ℕ0 → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0) |
19 | 6, 18 | pm2.61d1 180 | . 2 ⊢ (𝑉 ∈ Fin → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0) |
20 | wrdexg 14227 | . . 3 ⊢ (𝑉 ∈ Fin → Word 𝑉 ∈ V) | |
21 | rabexg 5255 | . . 3 ⊢ (Word 𝑉 ∈ V → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ V) | |
22 | hashclb 14073 | . . 3 ⊢ ({𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ V → ({𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ Fin ↔ (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0)) | |
23 | 20, 21, 22 | 3syl 18 | . 2 ⊢ (𝑉 ∈ Fin → ({𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ Fin ↔ (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0)) |
24 | 19, 23 | mpbird 256 | 1 ⊢ (𝑉 ∈ Fin → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 Vcvv 3432 ∅c0 4256 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 0cc0 10871 ℕ0cn0 12233 ↑cexp 13782 ♯chash 14044 Word cword 14217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-word 14218 |
This theorem is referenced by: wwlksnfi 28271 clwwlknfi 28409 |
Copyright terms: Public domain | W3C validator |