![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wrdnfi | Structured version Visualization version GIF version |
Description: If there is only a finite number of symbols, the number of words of a fixed length over these symbols is also finite. (Contributed by Alexander van der Vekens, 25-Mar-2018.) Remove unnecessary antecedent. (Revised by JJ, 18-Nov-2022.) |
Ref | Expression |
---|---|
wrdnfi | ⊢ (𝑉 ∈ Fin → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashwrdn 14499 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0) → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) = ((♯‘𝑉)↑𝑁)) | |
2 | hashcl 14317 | . . . . . 6 ⊢ (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0) | |
3 | nn0expcl 14042 | . . . . . 6 ⊢ (((♯‘𝑉) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑉)↑𝑁) ∈ ℕ0) | |
4 | 2, 3 | sylan 579 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑉)↑𝑁) ∈ ℕ0) |
5 | 1, 4 | eqeltrd 2825 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0) → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0) |
6 | 5 | ex 412 | . . 3 ⊢ (𝑉 ∈ Fin → (𝑁 ∈ ℕ0 → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0)) |
7 | lencl 14485 | . . . . . . . . . 10 ⊢ (𝑤 ∈ Word 𝑉 → (♯‘𝑤) ∈ ℕ0) | |
8 | eleq1 2813 | . . . . . . . . . 10 ⊢ ((♯‘𝑤) = 𝑁 → ((♯‘𝑤) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
9 | 7, 8 | syl5ibcom 244 | . . . . . . . . 9 ⊢ (𝑤 ∈ Word 𝑉 → ((♯‘𝑤) = 𝑁 → 𝑁 ∈ ℕ0)) |
10 | 9 | con3rr3 155 | . . . . . . . 8 ⊢ (¬ 𝑁 ∈ ℕ0 → (𝑤 ∈ Word 𝑉 → ¬ (♯‘𝑤) = 𝑁)) |
11 | 10 | ralrimiv 3137 | . . . . . . 7 ⊢ (¬ 𝑁 ∈ ℕ0 → ∀𝑤 ∈ Word 𝑉 ¬ (♯‘𝑤) = 𝑁) |
12 | rabeq0 4377 | . . . . . . 7 ⊢ ({𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = ∅ ↔ ∀𝑤 ∈ Word 𝑉 ¬ (♯‘𝑤) = 𝑁) | |
13 | 11, 12 | sylibr 233 | . . . . . 6 ⊢ (¬ 𝑁 ∈ ℕ0 → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = ∅) |
14 | 13 | fveq2d 6886 | . . . . 5 ⊢ (¬ 𝑁 ∈ ℕ0 → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) = (♯‘∅)) |
15 | hash0 14328 | . . . . 5 ⊢ (♯‘∅) = 0 | |
16 | 14, 15 | eqtrdi 2780 | . . . 4 ⊢ (¬ 𝑁 ∈ ℕ0 → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) = 0) |
17 | 0nn0 12486 | . . . 4 ⊢ 0 ∈ ℕ0 | |
18 | 16, 17 | eqeltrdi 2833 | . . 3 ⊢ (¬ 𝑁 ∈ ℕ0 → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0) |
19 | 6, 18 | pm2.61d1 180 | . 2 ⊢ (𝑉 ∈ Fin → (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0) |
20 | wrdexg 14476 | . . 3 ⊢ (𝑉 ∈ Fin → Word 𝑉 ∈ V) | |
21 | rabexg 5322 | . . 3 ⊢ (Word 𝑉 ∈ V → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ V) | |
22 | hashclb 14319 | . . 3 ⊢ ({𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ V → ({𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ Fin ↔ (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0)) | |
23 | 20, 21, 22 | 3syl 18 | . 2 ⊢ (𝑉 ∈ Fin → ({𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ Fin ↔ (♯‘{𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁}) ∈ ℕ0)) |
24 | 19, 23 | mpbird 257 | 1 ⊢ (𝑉 ∈ Fin → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 {crab 3424 Vcvv 3466 ∅c0 4315 ‘cfv 6534 (class class class)co 7402 Fincfn 8936 0cc0 11107 ℕ0cn0 12471 ↑cexp 14028 ♯chash 14291 Word cword 14466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-er 8700 df-map 8819 df-pm 8820 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-dju 9893 df-card 9931 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13486 df-fzo 13629 df-seq 13968 df-exp 14029 df-hash 14292 df-word 14467 |
This theorem is referenced by: wwlksnfi 29655 clwwlknfi 29793 upwrdfi 46147 |
Copyright terms: Public domain | W3C validator |