HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvnbtwn Structured version   Visualization version   GIF version

Theorem cvnbtwn 32215
Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvnbtwn ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ¬ (𝐴𝐶𝐶𝐵)))

Proof of Theorem cvnbtwn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cvbr 32211 . . . 4 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
2 psseq2 4054 . . . . . . . . 9 (𝑥 = 𝐶 → (𝐴𝑥𝐴𝐶))
3 psseq1 4053 . . . . . . . . 9 (𝑥 = 𝐶 → (𝑥𝐵𝐶𝐵))
42, 3anbi12d 632 . . . . . . . 8 (𝑥 = 𝐶 → ((𝐴𝑥𝑥𝐵) ↔ (𝐴𝐶𝐶𝐵)))
54rspcev 3588 . . . . . . 7 ((𝐶C ∧ (𝐴𝐶𝐶𝐵)) → ∃𝑥C (𝐴𝑥𝑥𝐵))
65ex 412 . . . . . 6 (𝐶C → ((𝐴𝐶𝐶𝐵) → ∃𝑥C (𝐴𝑥𝑥𝐵)))
76con3rr3 155 . . . . 5 (¬ ∃𝑥C (𝐴𝑥𝑥𝐵) → (𝐶C → ¬ (𝐴𝐶𝐶𝐵)))
87adantl 481 . . . 4 ((𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)) → (𝐶C → ¬ (𝐴𝐶𝐶𝐵)))
91, 8biimtrdi 253 . . 3 ((𝐴C𝐵C ) → (𝐴 𝐵 → (𝐶C → ¬ (𝐴𝐶𝐶𝐵))))
109com23 86 . 2 ((𝐴C𝐵C ) → (𝐶C → (𝐴 𝐵 → ¬ (𝐴𝐶𝐶𝐵))))
11103impia 1117 1 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ¬ (𝐴𝐶𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  wpss 3915   class class class wbr 5107   C cch 30858   ccv 30893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-cv 32208
This theorem is referenced by:  cvnbtwn2  32216  cvnbtwn3  32217  cvnbtwn4  32218  cvntr  32221
  Copyright terms: Public domain W3C validator