| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cvnbtwn | Structured version Visualization version GIF version | ||
| Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cvnbtwn | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvbr 32262 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)))) | |
| 2 | psseq2 4038 | . . . . . . . . 9 ⊢ (𝑥 = 𝐶 → (𝐴 ⊊ 𝑥 ↔ 𝐴 ⊊ 𝐶)) | |
| 3 | psseq1 4037 | . . . . . . . . 9 ⊢ (𝑥 = 𝐶 → (𝑥 ⊊ 𝐵 ↔ 𝐶 ⊊ 𝐵)) | |
| 4 | 2, 3 | anbi12d 632 | . . . . . . . 8 ⊢ (𝑥 = 𝐶 → ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) ↔ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) |
| 5 | 4 | rspcev 3572 | . . . . . . 7 ⊢ ((𝐶 ∈ Cℋ ∧ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) |
| 6 | 5 | ex 412 | . . . . . 6 ⊢ (𝐶 ∈ Cℋ → ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
| 7 | 6 | con3rr3 155 | . . . . 5 ⊢ (¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) → (𝐶 ∈ Cℋ → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) |
| 8 | 7 | adantl 481 | . . . 4 ⊢ ((𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) → (𝐶 ∈ Cℋ → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) |
| 9 | 1, 8 | biimtrdi 253 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → (𝐶 ∈ Cℋ → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵)))) |
| 10 | 9 | com23 86 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐶 ∈ Cℋ → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵)))) |
| 11 | 10 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊊ wpss 3898 class class class wbr 5089 Cℋ cch 30909 ⋖ℋ ccv 30944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-cv 32259 |
| This theorem is referenced by: cvnbtwn2 32267 cvnbtwn3 32268 cvnbtwn4 32269 cvntr 32272 |
| Copyright terms: Public domain | W3C validator |