| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cvnbtwn | Structured version Visualization version GIF version | ||
| Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cvnbtwn | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvbr 32218 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)))) | |
| 2 | psseq2 4057 | . . . . . . . . 9 ⊢ (𝑥 = 𝐶 → (𝐴 ⊊ 𝑥 ↔ 𝐴 ⊊ 𝐶)) | |
| 3 | psseq1 4056 | . . . . . . . . 9 ⊢ (𝑥 = 𝐶 → (𝑥 ⊊ 𝐵 ↔ 𝐶 ⊊ 𝐵)) | |
| 4 | 2, 3 | anbi12d 632 | . . . . . . . 8 ⊢ (𝑥 = 𝐶 → ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) ↔ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) |
| 5 | 4 | rspcev 3591 | . . . . . . 7 ⊢ ((𝐶 ∈ Cℋ ∧ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) |
| 6 | 5 | ex 412 | . . . . . 6 ⊢ (𝐶 ∈ Cℋ → ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
| 7 | 6 | con3rr3 155 | . . . . 5 ⊢ (¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) → (𝐶 ∈ Cℋ → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) |
| 8 | 7 | adantl 481 | . . . 4 ⊢ ((𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) → (𝐶 ∈ Cℋ → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) |
| 9 | 1, 8 | biimtrdi 253 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → (𝐶 ∈ Cℋ → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵)))) |
| 10 | 9 | com23 86 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐶 ∈ Cℋ → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵)))) |
| 11 | 10 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ⊊ wpss 3918 class class class wbr 5110 Cℋ cch 30865 ⋖ℋ ccv 30900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-cv 32215 |
| This theorem is referenced by: cvnbtwn2 32223 cvnbtwn3 32224 cvnbtwn4 32225 cvntr 32228 |
| Copyright terms: Public domain | W3C validator |