![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cvnbtwn | Structured version Visualization version GIF version |
Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvnbtwn | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvbr 29666 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)))) | |
2 | psseq2 3892 | . . . . . . . . 9 ⊢ (𝑥 = 𝐶 → (𝐴 ⊊ 𝑥 ↔ 𝐴 ⊊ 𝐶)) | |
3 | psseq1 3891 | . . . . . . . . 9 ⊢ (𝑥 = 𝐶 → (𝑥 ⊊ 𝐵 ↔ 𝐶 ⊊ 𝐵)) | |
4 | 2, 3 | anbi12d 625 | . . . . . . . 8 ⊢ (𝑥 = 𝐶 → ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) ↔ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) |
5 | 4 | rspcev 3497 | . . . . . . 7 ⊢ ((𝐶 ∈ Cℋ ∧ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) |
6 | 5 | ex 402 | . . . . . 6 ⊢ (𝐶 ∈ Cℋ → ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
7 | 6 | con3rr3 153 | . . . . 5 ⊢ (¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) → (𝐶 ∈ Cℋ → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) |
8 | 7 | adantl 474 | . . . 4 ⊢ ((𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) → (𝐶 ∈ Cℋ → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) |
9 | 1, 8 | syl6bi 245 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → (𝐶 ∈ Cℋ → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵)))) |
10 | 9 | com23 86 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐶 ∈ Cℋ → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵)))) |
11 | 10 | 3impia 1146 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∃wrex 3090 ⊊ wpss 3770 class class class wbr 4843 Cℋ cch 28311 ⋖ℋ ccv 28346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-cv 29663 |
This theorem is referenced by: cvnbtwn2 29671 cvnbtwn3 29672 cvnbtwn4 29673 cvntr 29676 |
Copyright terms: Public domain | W3C validator |