Proof of Theorem nbuhgr
Step | Hyp | Ref
| Expression |
1 | | nbuhgr.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | nbuhgr.e |
. . . 4
⊢ 𝐸 = (Edg‘𝐺) |
3 | 1, 2 | nbgrval 27684 |
. . 3
⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒}) |
4 | 3 | a1d 25 |
. 2
⊢ (𝑁 ∈ 𝑉 → ((𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒})) |
5 | | df-nel 3051 |
. . . . . 6
⊢ (𝑁 ∉ 𝑉 ↔ ¬ 𝑁 ∈ 𝑉) |
6 | 1 | nbgrnvtx0 27687 |
. . . . . 6
⊢ (𝑁 ∉ 𝑉 → (𝐺 NeighbVtx 𝑁) = ∅) |
7 | 5, 6 | sylbir 234 |
. . . . 5
⊢ (¬
𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = ∅) |
8 | 7 | adantr 480 |
. . . 4
⊢ ((¬
𝑁 ∈ 𝑉 ∧ (𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋)) → (𝐺 NeighbVtx 𝑁) = ∅) |
9 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋) → 𝐺 ∈ UHGraph) |
10 | 9 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → 𝐺 ∈ UHGraph) |
11 | 2 | eleq2i 2831 |
. . . . . . . . . . . 12
⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) |
12 | 11 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝑒 ∈ 𝐸 → 𝑒 ∈ (Edg‘𝐺)) |
13 | | edguhgr 27480 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺)) |
14 | 10, 12, 13 | syl2an 595 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝒫 (Vtx‘𝐺)) |
15 | | velpw 4543 |
. . . . . . . . . . . 12
⊢ (𝑒 ∈ 𝒫
(Vtx‘𝐺) ↔ 𝑒 ⊆ (Vtx‘𝐺)) |
16 | 1 | eqcomi 2748 |
. . . . . . . . . . . . 13
⊢
(Vtx‘𝐺) =
𝑉 |
17 | 16 | sseq2i 3954 |
. . . . . . . . . . . 12
⊢ (𝑒 ⊆ (Vtx‘𝐺) ↔ 𝑒 ⊆ 𝑉) |
18 | 15, 17 | bitri 274 |
. . . . . . . . . . 11
⊢ (𝑒 ∈ 𝒫
(Vtx‘𝐺) ↔ 𝑒 ⊆ 𝑉) |
19 | | sstr 3933 |
. . . . . . . . . . . . . . 15
⊢ (({𝑁, 𝑛} ⊆ 𝑒 ∧ 𝑒 ⊆ 𝑉) → {𝑁, 𝑛} ⊆ 𝑉) |
20 | | prssg 4757 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ 𝑋 ∧ 𝑛 ∈ V) → ((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) ↔ {𝑁, 𝑛} ⊆ 𝑉)) |
21 | 20 | bicomd 222 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ 𝑋 ∧ 𝑛 ∈ V) → ({𝑁, 𝑛} ⊆ 𝑉 ↔ (𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉))) |
22 | 21 | elvd 3437 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ 𝑋 → ({𝑁, 𝑛} ⊆ 𝑉 ↔ (𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉))) |
23 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → 𝑁 ∈ 𝑉) |
24 | 22, 23 | syl6bi 252 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ 𝑋 → ({𝑁, 𝑛} ⊆ 𝑉 → 𝑁 ∈ 𝑉)) |
25 | 19, 24 | syl5com 31 |
. . . . . . . . . . . . . 14
⊢ (({𝑁, 𝑛} ⊆ 𝑒 ∧ 𝑒 ⊆ 𝑉) → (𝑁 ∈ 𝑋 → 𝑁 ∈ 𝑉)) |
26 | 25 | ex 412 |
. . . . . . . . . . . . 13
⊢ ({𝑁, 𝑛} ⊆ 𝑒 → (𝑒 ⊆ 𝑉 → (𝑁 ∈ 𝑋 → 𝑁 ∈ 𝑉))) |
27 | 26 | com13 88 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ 𝑋 → (𝑒 ⊆ 𝑉 → ({𝑁, 𝑛} ⊆ 𝑒 → 𝑁 ∈ 𝑉))) |
28 | 27 | ad3antlr 727 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒 ∈ 𝐸) → (𝑒 ⊆ 𝑉 → ({𝑁, 𝑛} ⊆ 𝑒 → 𝑁 ∈ 𝑉))) |
29 | 18, 28 | syl5bi 241 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒 ∈ 𝐸) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) → ({𝑁, 𝑛} ⊆ 𝑒 → 𝑁 ∈ 𝑉))) |
30 | 14, 29 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒 ∈ 𝐸) → ({𝑁, 𝑛} ⊆ 𝑒 → 𝑁 ∈ 𝑉)) |
31 | 30 | rexlimdva 3214 |
. . . . . . . 8
⊢ (((𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → (∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒 → 𝑁 ∈ 𝑉)) |
32 | 31 | con3rr3 155 |
. . . . . . 7
⊢ (¬
𝑁 ∈ 𝑉 → (((𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → ¬ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒)) |
33 | 32 | expdimp 452 |
. . . . . 6
⊢ ((¬
𝑁 ∈ 𝑉 ∧ (𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋)) → (𝑛 ∈ (𝑉 ∖ {𝑁}) → ¬ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒)) |
34 | 33 | ralrimiv 3108 |
. . . . 5
⊢ ((¬
𝑁 ∈ 𝑉 ∧ (𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋)) → ∀𝑛 ∈ (𝑉 ∖ {𝑁}) ¬ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒) |
35 | | rabeq0 4323 |
. . . . 5
⊢ ({𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} = ∅ ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑁}) ¬ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒) |
36 | 34, 35 | sylibr 233 |
. . . 4
⊢ ((¬
𝑁 ∈ 𝑉 ∧ (𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋)) → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} = ∅) |
37 | 8, 36 | eqtr4d 2782 |
. . 3
⊢ ((¬
𝑁 ∈ 𝑉 ∧ (𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋)) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒}) |
38 | 37 | ex 412 |
. 2
⊢ (¬
𝑁 ∈ 𝑉 → ((𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒})) |
39 | 4, 38 | pm2.61i 182 |
1
⊢ ((𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑋) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒}) |