MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbuhgr Structured version   Visualization version   GIF version

Theorem nbuhgr 27691
Description: The set of neighbors of a vertex in a hypergraph. This version of nbgrval 27684 (with 𝑁 being an arbitrary set instead of being a vertex) only holds for classes whose edges are subsets of the set of vertices (hypergraphs!). (Contributed by AV, 26-Oct-2020.) (Proof shortened by AV, 15-Nov-2020.)
Hypotheses
Ref Expression
nbuhgr.v 𝑉 = (Vtx‘𝐺)
nbuhgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbuhgr ((𝐺 ∈ UHGraph ∧ 𝑁𝑋) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒})
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺,𝑛   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛   𝑒,𝑋,𝑛
Allowed substitution hint:   𝐸(𝑛)

Proof of Theorem nbuhgr
StepHypRef Expression
1 nbuhgr.v . . . 4 𝑉 = (Vtx‘𝐺)
2 nbuhgr.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2nbgrval 27684 . . 3 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒})
43a1d 25 . 2 (𝑁𝑉 → ((𝐺 ∈ UHGraph ∧ 𝑁𝑋) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}))
5 df-nel 3051 . . . . . 6 (𝑁𝑉 ↔ ¬ 𝑁𝑉)
61nbgrnvtx0 27687 . . . . . 6 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = ∅)
75, 6sylbir 234 . . . . 5 𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = ∅)
87adantr 480 . . . 4 ((¬ 𝑁𝑉 ∧ (𝐺 ∈ UHGraph ∧ 𝑁𝑋)) → (𝐺 NeighbVtx 𝑁) = ∅)
9 simpl 482 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ 𝑁𝑋) → 𝐺 ∈ UHGraph)
109adantr 480 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝑁𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → 𝐺 ∈ UHGraph)
112eleq2i 2831 . . . . . . . . . . . 12 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
1211biimpi 215 . . . . . . . . . . 11 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
13 edguhgr 27480 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
1410, 12, 13syl2an 595 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ 𝑁𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
15 velpw 4543 . . . . . . . . . . . 12 (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ (Vtx‘𝐺))
161eqcomi 2748 . . . . . . . . . . . . 13 (Vtx‘𝐺) = 𝑉
1716sseq2i 3954 . . . . . . . . . . . 12 (𝑒 ⊆ (Vtx‘𝐺) ↔ 𝑒𝑉)
1815, 17bitri 274 . . . . . . . . . . 11 (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒𝑉)
19 sstr 3933 . . . . . . . . . . . . . . 15 (({𝑁, 𝑛} ⊆ 𝑒𝑒𝑉) → {𝑁, 𝑛} ⊆ 𝑉)
20 prssg 4757 . . . . . . . . . . . . . . . . . 18 ((𝑁𝑋𝑛 ∈ V) → ((𝑁𝑉𝑛𝑉) ↔ {𝑁, 𝑛} ⊆ 𝑉))
2120bicomd 222 . . . . . . . . . . . . . . . . 17 ((𝑁𝑋𝑛 ∈ V) → ({𝑁, 𝑛} ⊆ 𝑉 ↔ (𝑁𝑉𝑛𝑉)))
2221elvd 3437 . . . . . . . . . . . . . . . 16 (𝑁𝑋 → ({𝑁, 𝑛} ⊆ 𝑉 ↔ (𝑁𝑉𝑛𝑉)))
23 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑁𝑉𝑛𝑉) → 𝑁𝑉)
2422, 23syl6bi 252 . . . . . . . . . . . . . . 15 (𝑁𝑋 → ({𝑁, 𝑛} ⊆ 𝑉𝑁𝑉))
2519, 24syl5com 31 . . . . . . . . . . . . . 14 (({𝑁, 𝑛} ⊆ 𝑒𝑒𝑉) → (𝑁𝑋𝑁𝑉))
2625ex 412 . . . . . . . . . . . . 13 ({𝑁, 𝑛} ⊆ 𝑒 → (𝑒𝑉 → (𝑁𝑋𝑁𝑉)))
2726com13 88 . . . . . . . . . . . 12 (𝑁𝑋 → (𝑒𝑉 → ({𝑁, 𝑛} ⊆ 𝑒𝑁𝑉)))
2827ad3antlr 727 . . . . . . . . . . 11 ((((𝐺 ∈ UHGraph ∧ 𝑁𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → (𝑒𝑉 → ({𝑁, 𝑛} ⊆ 𝑒𝑁𝑉)))
2918, 28syl5bi 241 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ 𝑁𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) → ({𝑁, 𝑛} ⊆ 𝑒𝑁𝑉)))
3014, 29mpd 15 . . . . . . . . 9 ((((𝐺 ∈ UHGraph ∧ 𝑁𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → ({𝑁, 𝑛} ⊆ 𝑒𝑁𝑉))
3130rexlimdva 3214 . . . . . . . 8 (((𝐺 ∈ UHGraph ∧ 𝑁𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → (∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒𝑁𝑉))
3231con3rr3 155 . . . . . . 7 𝑁𝑉 → (((𝐺 ∈ UHGraph ∧ 𝑁𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → ¬ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒))
3332expdimp 452 . . . . . 6 ((¬ 𝑁𝑉 ∧ (𝐺 ∈ UHGraph ∧ 𝑁𝑋)) → (𝑛 ∈ (𝑉 ∖ {𝑁}) → ¬ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒))
3433ralrimiv 3108 . . . . 5 ((¬ 𝑁𝑉 ∧ (𝐺 ∈ UHGraph ∧ 𝑁𝑋)) → ∀𝑛 ∈ (𝑉 ∖ {𝑁}) ¬ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒)
35 rabeq0 4323 . . . . 5 ({𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒} = ∅ ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑁}) ¬ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒)
3634, 35sylibr 233 . . . 4 ((¬ 𝑁𝑉 ∧ (𝐺 ∈ UHGraph ∧ 𝑁𝑋)) → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒} = ∅)
378, 36eqtr4d 2782 . . 3 ((¬ 𝑁𝑉 ∧ (𝐺 ∈ UHGraph ∧ 𝑁𝑋)) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒})
3837ex 412 . 2 𝑁𝑉 → ((𝐺 ∈ UHGraph ∧ 𝑁𝑋) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}))
394, 38pm2.61i 182 1 ((𝐺 ∈ UHGraph ∧ 𝑁𝑋) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wnel 3050  wral 3065  wrex 3066  {crab 3069  Vcvv 3430  cdif 3888  wss 3891  c0 4261  𝒫 cpw 4538  {csn 4566  {cpr 4568  cfv 6430  (class class class)co 7268  Vtxcvtx 27347  Edgcedg 27398  UHGraphcuhgr 27407   NeighbVtx cnbgr 27680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-edg 27399  df-uhgr 27409  df-nbgr 27681
This theorem is referenced by:  uhgrnbgr0nb  27702
  Copyright terms: Public domain W3C validator