MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbuhgr Structured version   Visualization version   GIF version

Theorem nbuhgr 26532
Description: The set of neighbors of a vertex in a hypergraph. This version of nbgrval 26522 (with 𝑁 being an arbitrary set instead of being a vertex) only holds for classes whose edges are subsets of the set of vertices (hypergraphs!). (Contributed by AV, 26-Oct-2020.) (Proof shortened by AV, 15-Nov-2020.)
Hypotheses
Ref Expression
nbuhgr.v 𝑉 = (Vtx‘𝐺)
nbuhgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbuhgr ((𝐺 ∈ UHGraph ∧ 𝑁𝑋) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒})
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺,𝑛   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛   𝑒,𝑋,𝑛
Allowed substitution hint:   𝐸(𝑛)

Proof of Theorem nbuhgr
StepHypRef Expression
1 nbuhgr.v . . . 4 𝑉 = (Vtx‘𝐺)
2 nbuhgr.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2nbgrval 26522 . . 3 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒})
43a1d 25 . 2 (𝑁𝑉 → ((𝐺 ∈ UHGraph ∧ 𝑁𝑋) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}))
5 df-nel 3041 . . . . . 6 (𝑁𝑉 ↔ ¬ 𝑁𝑉)
61nbgrnvtx0 26525 . . . . . 6 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = ∅)
75, 6sylbir 226 . . . . 5 𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = ∅)
87adantr 472 . . . 4 ((¬ 𝑁𝑉 ∧ (𝐺 ∈ UHGraph ∧ 𝑁𝑋)) → (𝐺 NeighbVtx 𝑁) = ∅)
9 simpl 474 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ 𝑁𝑋) → 𝐺 ∈ UHGraph)
109adantr 472 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝑁𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → 𝐺 ∈ UHGraph)
112eleq2i 2836 . . . . . . . . . . . 12 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
1211biimpi 207 . . . . . . . . . . 11 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
13 edguhgr 26315 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
1410, 12, 13syl2an 589 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ 𝑁𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
15 selpw 4324 . . . . . . . . . . . 12 (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ (Vtx‘𝐺))
161eqcomi 2774 . . . . . . . . . . . . 13 (Vtx‘𝐺) = 𝑉
1716sseq2i 3792 . . . . . . . . . . . 12 (𝑒 ⊆ (Vtx‘𝐺) ↔ 𝑒𝑉)
1815, 17bitri 266 . . . . . . . . . . 11 (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒𝑉)
19 sstr 3771 . . . . . . . . . . . . . . 15 (({𝑁, 𝑛} ⊆ 𝑒𝑒𝑉) → {𝑁, 𝑛} ⊆ 𝑉)
20 prssg 4506 . . . . . . . . . . . . . . . . . 18 ((𝑁𝑋𝑛 ∈ V) → ((𝑁𝑉𝑛𝑉) ↔ {𝑁, 𝑛} ⊆ 𝑉))
2120bicomd 214 . . . . . . . . . . . . . . . . 17 ((𝑁𝑋𝑛 ∈ V) → ({𝑁, 𝑛} ⊆ 𝑉 ↔ (𝑁𝑉𝑛𝑉)))
2221elvd 3355 . . . . . . . . . . . . . . . 16 (𝑁𝑋 → ({𝑁, 𝑛} ⊆ 𝑉 ↔ (𝑁𝑉𝑛𝑉)))
23 simpl 474 . . . . . . . . . . . . . . . 16 ((𝑁𝑉𝑛𝑉) → 𝑁𝑉)
2422, 23syl6bi 244 . . . . . . . . . . . . . . 15 (𝑁𝑋 → ({𝑁, 𝑛} ⊆ 𝑉𝑁𝑉))
2519, 24syl5com 31 . . . . . . . . . . . . . 14 (({𝑁, 𝑛} ⊆ 𝑒𝑒𝑉) → (𝑁𝑋𝑁𝑉))
2625ex 401 . . . . . . . . . . . . 13 ({𝑁, 𝑛} ⊆ 𝑒 → (𝑒𝑉 → (𝑁𝑋𝑁𝑉)))
2726com13 88 . . . . . . . . . . . 12 (𝑁𝑋 → (𝑒𝑉 → ({𝑁, 𝑛} ⊆ 𝑒𝑁𝑉)))
2827ad3antlr 722 . . . . . . . . . . 11 ((((𝐺 ∈ UHGraph ∧ 𝑁𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → (𝑒𝑉 → ({𝑁, 𝑛} ⊆ 𝑒𝑁𝑉)))
2918, 28syl5bi 233 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ 𝑁𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) → ({𝑁, 𝑛} ⊆ 𝑒𝑁𝑉)))
3014, 29mpd 15 . . . . . . . . 9 ((((𝐺 ∈ UHGraph ∧ 𝑁𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → ({𝑁, 𝑛} ⊆ 𝑒𝑁𝑉))
3130rexlimdva 3178 . . . . . . . 8 (((𝐺 ∈ UHGraph ∧ 𝑁𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → (∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒𝑁𝑉))
3231con3rr3 152 . . . . . . 7 𝑁𝑉 → (((𝐺 ∈ UHGraph ∧ 𝑁𝑋) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → ¬ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒))
3332expdimp 444 . . . . . 6 ((¬ 𝑁𝑉 ∧ (𝐺 ∈ UHGraph ∧ 𝑁𝑋)) → (𝑛 ∈ (𝑉 ∖ {𝑁}) → ¬ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒))
3433ralrimiv 3112 . . . . 5 ((¬ 𝑁𝑉 ∧ (𝐺 ∈ UHGraph ∧ 𝑁𝑋)) → ∀𝑛 ∈ (𝑉 ∖ {𝑁}) ¬ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒)
35 rabeq0 4123 . . . . 5 ({𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒} = ∅ ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑁}) ¬ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒)
3634, 35sylibr 225 . . . 4 ((¬ 𝑁𝑉 ∧ (𝐺 ∈ UHGraph ∧ 𝑁𝑋)) → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒} = ∅)
378, 36eqtr4d 2802 . . 3 ((¬ 𝑁𝑉 ∧ (𝐺 ∈ UHGraph ∧ 𝑁𝑋)) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒})
3837ex 401 . 2 𝑁𝑉 → ((𝐺 ∈ UHGraph ∧ 𝑁𝑋) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}))
394, 38pm2.61i 176 1 ((𝐺 ∈ UHGraph ∧ 𝑁𝑋) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wnel 3040  wral 3055  wrex 3056  {crab 3059  Vcvv 3350  cdif 3731  wss 3734  c0 4081  𝒫 cpw 4317  {csn 4336  {cpr 4338  cfv 6070  (class class class)co 6846  Vtxcvtx 26179  Edgcedg 26230  UHGraphcuhgr 26242   NeighbVtx cnbgr 26517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-nel 3041  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-fv 6078  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-1st 7370  df-2nd 7371  df-edg 26231  df-uhgr 26244  df-nbgr 26518
This theorem is referenced by:  uhgrnbgr0nb  26543
  Copyright terms: Public domain W3C validator