| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fvimacnv0 | Structured version Visualization version GIF version | ||
| Description: Variant of fvimacnv 7048 where membership of 𝐴 in the domain is not needed provided the containing class 𝐵 does not contain the empty set. Note that this antecedent would not be needed with Definition df-afv 47116. (Contributed by BJ, 7-Jan-2024.) |
| Ref | Expression |
|---|---|
| bj-fvimacnv0 | ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2823 | . . . . . . . . . 10 ⊢ ((𝐹‘𝐴) = ∅ → ((𝐹‘𝐴) ∈ 𝐵 ↔ ∅ ∈ 𝐵)) | |
| 2 | 1 | biimpcd 249 | . . . . . . . . 9 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → ((𝐹‘𝐴) = ∅ → ∅ ∈ 𝐵)) |
| 3 | 2 | con3rr3 155 | . . . . . . . 8 ⊢ (¬ ∅ ∈ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → ¬ (𝐹‘𝐴) = ∅)) |
| 4 | 3 | imp 406 | . . . . . . 7 ⊢ ((¬ ∅ ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → ¬ (𝐹‘𝐴) = ∅) |
| 5 | ndmfv 6916 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
| 6 | 4, 5 | nsyl2 141 | . . . . . 6 ⊢ ((¬ ∅ ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → 𝐴 ∈ dom 𝐹) |
| 7 | simpr 484 | . . . . . 6 ⊢ ((¬ ∅ ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → (𝐹‘𝐴) ∈ 𝐵) | |
| 8 | fvimacnv 7048 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) | |
| 9 | 8 | biimpd 229 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
| 10 | 9 | ex 412 | . . . . . . 7 ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵)))) |
| 11 | 10 | com3l 89 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝐹 → ((𝐹‘𝐴) ∈ 𝐵 → (Fun 𝐹 → 𝐴 ∈ (◡𝐹 “ 𝐵)))) |
| 12 | 6, 7, 11 | sylc 65 | . . . . 5 ⊢ ((¬ ∅ ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → (Fun 𝐹 → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
| 13 | 12 | ex 412 | . . . 4 ⊢ (¬ ∅ ∈ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → (Fun 𝐹 → 𝐴 ∈ (◡𝐹 “ 𝐵)))) |
| 14 | 13 | com3r 87 | . . 3 ⊢ (Fun 𝐹 → (¬ ∅ ∈ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵)))) |
| 15 | 14 | imp 406 | . 2 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
| 16 | fvimacnvi 7047 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) | |
| 17 | 16 | ex 412 | . . 3 ⊢ (Fun 𝐹 → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) |
| 18 | 17 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) |
| 19 | 15, 18 | impbid 212 | 1 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4313 ◡ccnv 5658 dom cdm 5659 “ cima 5662 Fun wfun 6530 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |