![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fvimacnv0 | Structured version Visualization version GIF version |
Description: Variant of fvimacnv 7054 where membership of 𝐴 in the domain is not needed provided the containing class 𝐵 does not contain the empty set. Note that this antecedent would not be needed with Definition df-afv 46127. (Contributed by BJ, 7-Jan-2024.) |
Ref | Expression |
---|---|
bj-fvimacnv0 | ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2820 | . . . . . . . . . 10 ⊢ ((𝐹‘𝐴) = ∅ → ((𝐹‘𝐴) ∈ 𝐵 ↔ ∅ ∈ 𝐵)) | |
2 | 1 | biimpcd 248 | . . . . . . . . 9 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → ((𝐹‘𝐴) = ∅ → ∅ ∈ 𝐵)) |
3 | 2 | con3rr3 155 | . . . . . . . 8 ⊢ (¬ ∅ ∈ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → ¬ (𝐹‘𝐴) = ∅)) |
4 | 3 | imp 406 | . . . . . . 7 ⊢ ((¬ ∅ ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → ¬ (𝐹‘𝐴) = ∅) |
5 | ndmfv 6926 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
6 | 4, 5 | nsyl2 141 | . . . . . 6 ⊢ ((¬ ∅ ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → 𝐴 ∈ dom 𝐹) |
7 | simpr 484 | . . . . . 6 ⊢ ((¬ ∅ ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → (𝐹‘𝐴) ∈ 𝐵) | |
8 | fvimacnv 7054 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) | |
9 | 8 | biimpd 228 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
10 | 9 | ex 412 | . . . . . . 7 ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵)))) |
11 | 10 | com3l 89 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝐹 → ((𝐹‘𝐴) ∈ 𝐵 → (Fun 𝐹 → 𝐴 ∈ (◡𝐹 “ 𝐵)))) |
12 | 6, 7, 11 | sylc 65 | . . . . 5 ⊢ ((¬ ∅ ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → (Fun 𝐹 → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
13 | 12 | ex 412 | . . . 4 ⊢ (¬ ∅ ∈ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → (Fun 𝐹 → 𝐴 ∈ (◡𝐹 “ 𝐵)))) |
14 | 13 | com3r 87 | . . 3 ⊢ (Fun 𝐹 → (¬ ∅ ∈ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵)))) |
15 | 14 | imp 406 | . 2 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
16 | fvimacnvi 7053 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) | |
17 | 16 | ex 412 | . . 3 ⊢ (Fun 𝐹 → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) |
18 | 17 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) |
19 | 15, 18 | impbid 211 | 1 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∅c0 4322 ◡ccnv 5675 dom cdm 5676 “ cima 5679 Fun wfun 6537 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |