Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fvimacnv0 | Structured version Visualization version GIF version |
Description: Variant of fvimacnv 6912 where membership of 𝐴 in the domain is not needed provided the containing class 𝐵 does not contain the empty set. Note that this antecedent would not be needed with Definition df-afv 44499. (Contributed by BJ, 7-Jan-2024.) |
Ref | Expression |
---|---|
bj-fvimacnv0 | ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . . . . . . . 10 ⊢ ((𝐹‘𝐴) = ∅ → ((𝐹‘𝐴) ∈ 𝐵 ↔ ∅ ∈ 𝐵)) | |
2 | 1 | biimpcd 248 | . . . . . . . . 9 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → ((𝐹‘𝐴) = ∅ → ∅ ∈ 𝐵)) |
3 | 2 | con3rr3 155 | . . . . . . . 8 ⊢ (¬ ∅ ∈ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → ¬ (𝐹‘𝐴) = ∅)) |
4 | 3 | imp 406 | . . . . . . 7 ⊢ ((¬ ∅ ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → ¬ (𝐹‘𝐴) = ∅) |
5 | ndmfv 6786 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
6 | 4, 5 | nsyl2 141 | . . . . . 6 ⊢ ((¬ ∅ ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → 𝐴 ∈ dom 𝐹) |
7 | simpr 484 | . . . . . 6 ⊢ ((¬ ∅ ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → (𝐹‘𝐴) ∈ 𝐵) | |
8 | fvimacnv 6912 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) | |
9 | 8 | biimpd 228 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
10 | 9 | ex 412 | . . . . . . 7 ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵)))) |
11 | 10 | com3l 89 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝐹 → ((𝐹‘𝐴) ∈ 𝐵 → (Fun 𝐹 → 𝐴 ∈ (◡𝐹 “ 𝐵)))) |
12 | 6, 7, 11 | sylc 65 | . . . . 5 ⊢ ((¬ ∅ ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → (Fun 𝐹 → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
13 | 12 | ex 412 | . . . 4 ⊢ (¬ ∅ ∈ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → (Fun 𝐹 → 𝐴 ∈ (◡𝐹 “ 𝐵)))) |
14 | 13 | com3r 87 | . . 3 ⊢ (Fun 𝐹 → (¬ ∅ ∈ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵)))) |
15 | 14 | imp 406 | . 2 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
16 | fvimacnvi 6911 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) | |
17 | 16 | ex 412 | . . 3 ⊢ (Fun 𝐹 → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) |
18 | 17 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) |
19 | 15, 18 | impbid 211 | 1 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∅c0 4253 ◡ccnv 5579 dom cdm 5580 “ cima 5583 Fun wfun 6412 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |