|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fvimacnv0 | Structured version Visualization version GIF version | ||
| Description: Variant of fvimacnv 7072 where membership of 𝐴 in the domain is not needed provided the containing class 𝐵 does not contain the empty set. Note that this antecedent would not be needed with Definition df-afv 47137. (Contributed by BJ, 7-Jan-2024.) | 
| Ref | Expression | 
|---|---|
| bj-fvimacnv0 | ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1 2828 | . . . . . . . . . 10 ⊢ ((𝐹‘𝐴) = ∅ → ((𝐹‘𝐴) ∈ 𝐵 ↔ ∅ ∈ 𝐵)) | |
| 2 | 1 | biimpcd 249 | . . . . . . . . 9 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → ((𝐹‘𝐴) = ∅ → ∅ ∈ 𝐵)) | 
| 3 | 2 | con3rr3 155 | . . . . . . . 8 ⊢ (¬ ∅ ∈ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → ¬ (𝐹‘𝐴) = ∅)) | 
| 4 | 3 | imp 406 | . . . . . . 7 ⊢ ((¬ ∅ ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → ¬ (𝐹‘𝐴) = ∅) | 
| 5 | ndmfv 6940 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
| 6 | 4, 5 | nsyl2 141 | . . . . . 6 ⊢ ((¬ ∅ ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → 𝐴 ∈ dom 𝐹) | 
| 7 | simpr 484 | . . . . . 6 ⊢ ((¬ ∅ ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → (𝐹‘𝐴) ∈ 𝐵) | |
| 8 | fvimacnv 7072 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) | |
| 9 | 8 | biimpd 229 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵))) | 
| 10 | 9 | ex 412 | . . . . . . 7 ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵)))) | 
| 11 | 10 | com3l 89 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝐹 → ((𝐹‘𝐴) ∈ 𝐵 → (Fun 𝐹 → 𝐴 ∈ (◡𝐹 “ 𝐵)))) | 
| 12 | 6, 7, 11 | sylc 65 | . . . . 5 ⊢ ((¬ ∅ ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → (Fun 𝐹 → 𝐴 ∈ (◡𝐹 “ 𝐵))) | 
| 13 | 12 | ex 412 | . . . 4 ⊢ (¬ ∅ ∈ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → (Fun 𝐹 → 𝐴 ∈ (◡𝐹 “ 𝐵)))) | 
| 14 | 13 | com3r 87 | . . 3 ⊢ (Fun 𝐹 → (¬ ∅ ∈ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵)))) | 
| 15 | 14 | imp 406 | . 2 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵))) | 
| 16 | fvimacnvi 7071 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) | |
| 17 | 16 | ex 412 | . . 3 ⊢ (Fun 𝐹 → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) | 
| 18 | 17 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) | 
| 19 | 15, 18 | impbid 212 | 1 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∅c0 4332 ◡ccnv 5683 dom cdm 5684 “ cima 5687 Fun wfun 6554 ‘cfv 6560 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-fv 6568 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |