Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fvimacnv0 Structured version   Visualization version   GIF version

Theorem bj-fvimacnv0 36471
Description: Variant of fvimacnv 7054 where membership of 𝐴 in the domain is not needed provided the containing class 𝐵 does not contain the empty set. Note that this antecedent would not be needed with Definition df-afv 46127. (Contributed by BJ, 7-Jan-2024.)
Assertion
Ref Expression
bj-fvimacnv0 ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))

Proof of Theorem bj-fvimacnv0
StepHypRef Expression
1 eleq1 2820 . . . . . . . . . 10 ((𝐹𝐴) = ∅ → ((𝐹𝐴) ∈ 𝐵 ↔ ∅ ∈ 𝐵))
21biimpcd 248 . . . . . . . . 9 ((𝐹𝐴) ∈ 𝐵 → ((𝐹𝐴) = ∅ → ∅ ∈ 𝐵))
32con3rr3 155 . . . . . . . 8 (¬ ∅ ∈ 𝐵 → ((𝐹𝐴) ∈ 𝐵 → ¬ (𝐹𝐴) = ∅))
43imp 406 . . . . . . 7 ((¬ ∅ ∈ 𝐵 ∧ (𝐹𝐴) ∈ 𝐵) → ¬ (𝐹𝐴) = ∅)
5 ndmfv 6926 . . . . . . 7 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
64, 5nsyl2 141 . . . . . 6 ((¬ ∅ ∈ 𝐵 ∧ (𝐹𝐴) ∈ 𝐵) → 𝐴 ∈ dom 𝐹)
7 simpr 484 . . . . . 6 ((¬ ∅ ∈ 𝐵 ∧ (𝐹𝐴) ∈ 𝐵) → (𝐹𝐴) ∈ 𝐵)
8 fvimacnv 7054 . . . . . . . . 9 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
98biimpd 228 . . . . . . . 8 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
109ex 412 . . . . . . 7 (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵))))
1110com3l 89 . . . . . 6 (𝐴 ∈ dom 𝐹 → ((𝐹𝐴) ∈ 𝐵 → (Fun 𝐹𝐴 ∈ (𝐹𝐵))))
126, 7, 11sylc 65 . . . . 5 ((¬ ∅ ∈ 𝐵 ∧ (𝐹𝐴) ∈ 𝐵) → (Fun 𝐹𝐴 ∈ (𝐹𝐵)))
1312ex 412 . . . 4 (¬ ∅ ∈ 𝐵 → ((𝐹𝐴) ∈ 𝐵 → (Fun 𝐹𝐴 ∈ (𝐹𝐵))))
1413com3r 87 . . 3 (Fun 𝐹 → (¬ ∅ ∈ 𝐵 → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵))))
1514imp 406 . 2 ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
16 fvimacnvi 7053 . . . 4 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹𝐴) ∈ 𝐵)
1716ex 412 . . 3 (Fun 𝐹 → (𝐴 ∈ (𝐹𝐵) → (𝐹𝐴) ∈ 𝐵))
1817adantr 480 . 2 ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → (𝐴 ∈ (𝐹𝐵) → (𝐹𝐴) ∈ 𝐵))
1915, 18impbid 211 1 ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  c0 4322  ccnv 5675  dom cdm 5676  cima 5679  Fun wfun 6537  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator