Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fvimacnv0 Structured version   Visualization version   GIF version

Theorem bj-fvimacnv0 37274
Description: Variant of fvimacnv 7025 where membership of 𝐴 in the domain is not needed provided the containing class 𝐵 does not contain the empty set. Note that this antecedent would not be needed with Definition df-afv 47121. (Contributed by BJ, 7-Jan-2024.)
Assertion
Ref Expression
bj-fvimacnv0 ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))

Proof of Theorem bj-fvimacnv0
StepHypRef Expression
1 eleq1 2816 . . . . . . . . . 10 ((𝐹𝐴) = ∅ → ((𝐹𝐴) ∈ 𝐵 ↔ ∅ ∈ 𝐵))
21biimpcd 249 . . . . . . . . 9 ((𝐹𝐴) ∈ 𝐵 → ((𝐹𝐴) = ∅ → ∅ ∈ 𝐵))
32con3rr3 155 . . . . . . . 8 (¬ ∅ ∈ 𝐵 → ((𝐹𝐴) ∈ 𝐵 → ¬ (𝐹𝐴) = ∅))
43imp 406 . . . . . . 7 ((¬ ∅ ∈ 𝐵 ∧ (𝐹𝐴) ∈ 𝐵) → ¬ (𝐹𝐴) = ∅)
5 ndmfv 6893 . . . . . . 7 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
64, 5nsyl2 141 . . . . . 6 ((¬ ∅ ∈ 𝐵 ∧ (𝐹𝐴) ∈ 𝐵) → 𝐴 ∈ dom 𝐹)
7 simpr 484 . . . . . 6 ((¬ ∅ ∈ 𝐵 ∧ (𝐹𝐴) ∈ 𝐵) → (𝐹𝐴) ∈ 𝐵)
8 fvimacnv 7025 . . . . . . . . 9 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
98biimpd 229 . . . . . . . 8 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
109ex 412 . . . . . . 7 (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵))))
1110com3l 89 . . . . . 6 (𝐴 ∈ dom 𝐹 → ((𝐹𝐴) ∈ 𝐵 → (Fun 𝐹𝐴 ∈ (𝐹𝐵))))
126, 7, 11sylc 65 . . . . 5 ((¬ ∅ ∈ 𝐵 ∧ (𝐹𝐴) ∈ 𝐵) → (Fun 𝐹𝐴 ∈ (𝐹𝐵)))
1312ex 412 . . . 4 (¬ ∅ ∈ 𝐵 → ((𝐹𝐴) ∈ 𝐵 → (Fun 𝐹𝐴 ∈ (𝐹𝐵))))
1413com3r 87 . . 3 (Fun 𝐹 → (¬ ∅ ∈ 𝐵 → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵))))
1514imp 406 . 2 ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
16 fvimacnvi 7024 . . . 4 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹𝐴) ∈ 𝐵)
1716ex 412 . . 3 (Fun 𝐹 → (𝐴 ∈ (𝐹𝐵) → (𝐹𝐴) ∈ 𝐵))
1817adantr 480 . 2 ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → (𝐴 ∈ (𝐹𝐵) → (𝐹𝐴) ∈ 𝐵))
1915, 18impbid 212 1 ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  c0 4296  ccnv 5637  dom cdm 5638  cima 5641  Fun wfun 6505  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator