Proof of Theorem nb3grprlem2
Step | Hyp | Ref
| Expression |
1 | | nb3grpr.s |
. . 3
⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) |
2 | | sneq 4568 |
. . . . . 6
⊢ (𝑣 = 𝐴 → {𝑣} = {𝐴}) |
3 | 2 | difeq2d 4053 |
. . . . 5
⊢ (𝑣 = 𝐴 → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐴})) |
4 | | preq1 4666 |
. . . . . 6
⊢ (𝑣 = 𝐴 → {𝑣, 𝑤} = {𝐴, 𝑤}) |
5 | 4 | eqeq2d 2749 |
. . . . 5
⊢ (𝑣 = 𝐴 → ((𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤})) |
6 | 3, 5 | rexeqbidv 3328 |
. . . 4
⊢ (𝑣 = 𝐴 → (∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})(𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤})) |
7 | | sneq 4568 |
. . . . . 6
⊢ (𝑣 = 𝐵 → {𝑣} = {𝐵}) |
8 | 7 | difeq2d 4053 |
. . . . 5
⊢ (𝑣 = 𝐵 → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐵})) |
9 | | preq1 4666 |
. . . . . 6
⊢ (𝑣 = 𝐵 → {𝑣, 𝑤} = {𝐵, 𝑤}) |
10 | 9 | eqeq2d 2749 |
. . . . 5
⊢ (𝑣 = 𝐵 → ((𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤})) |
11 | 8, 10 | rexeqbidv 3328 |
. . . 4
⊢ (𝑣 = 𝐵 → (∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})(𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤})) |
12 | | sneq 4568 |
. . . . . 6
⊢ (𝑣 = 𝐶 → {𝑣} = {𝐶}) |
13 | 12 | difeq2d 4053 |
. . . . 5
⊢ (𝑣 = 𝐶 → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐶})) |
14 | | preq1 4666 |
. . . . . 6
⊢ (𝑣 = 𝐶 → {𝑣, 𝑤} = {𝐶, 𝑤}) |
15 | 14 | eqeq2d 2749 |
. . . . 5
⊢ (𝑣 = 𝐶 → ((𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤})) |
16 | 13, 15 | rexeqbidv 3328 |
. . . 4
⊢ (𝑣 = 𝐶 → (∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})(𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤})) |
17 | 6, 11, 16 | rextpg 4632 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (∃𝑣 ∈ {𝐴, 𝐵, 𝐶}∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ (∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})(𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})(𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})(𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤}))) |
18 | 1, 17 | syl 17 |
. 2
⊢ (𝜑 → (∃𝑣 ∈ {𝐴, 𝐵, 𝐶}∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ (∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})(𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})(𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})(𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤}))) |
19 | | nb3grpr.t |
. . . 4
⊢ (𝜑 → 𝑉 = {𝐴, 𝐵, 𝐶}) |
20 | | nb3grpr.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ USGraph) |
21 | 19, 20 | jca 511 |
. . 3
⊢ (𝜑 → (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) |
22 | | simpl 482 |
. . . 4
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝑉 = {𝐴, 𝐵, 𝐶}) |
23 | | difeq1 4046 |
. . . . . 6
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → (𝑉 ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝑣})) |
24 | 23 | adantr 480 |
. . . . 5
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (𝑉 ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝑣})) |
25 | 24 | rexeqdv 3340 |
. . . 4
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (∃𝑤 ∈ (𝑉 ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤})) |
26 | 22, 25 | rexeqbidv 3328 |
. . 3
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (∃𝑣 ∈ 𝑉 ∃𝑤 ∈ (𝑉 ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ ∃𝑣 ∈ {𝐴, 𝐵, 𝐶}∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤})) |
27 | 21, 26 | syl 17 |
. 2
⊢ (𝜑 → (∃𝑣 ∈ 𝑉 ∃𝑤 ∈ (𝑉 ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ ∃𝑣 ∈ {𝐴, 𝐵, 𝐶}∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤})) |
28 | | preq2 4667 |
. . . . . . . 8
⊢ (𝑤 = 𝐵 → {𝐴, 𝑤} = {𝐴, 𝐵}) |
29 | 28 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → ((𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ↔ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵})) |
30 | | preq2 4667 |
. . . . . . . 8
⊢ (𝑤 = 𝐶 → {𝐴, 𝑤} = {𝐴, 𝐶}) |
31 | 30 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑤 = 𝐶 → ((𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ↔ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶})) |
32 | 29, 31 | rexprg 4629 |
. . . . . 6
⊢ ((𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (∃𝑤 ∈ {𝐵, 𝐶} (𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∨ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}))) |
33 | 32 | 3adant1 1128 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (∃𝑤 ∈ {𝐵, 𝐶} (𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∨ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}))) |
34 | | preq2 4667 |
. . . . . . . . 9
⊢ (𝑤 = 𝐶 → {𝐵, 𝑤} = {𝐵, 𝐶}) |
35 | 34 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑤 = 𝐶 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ↔ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶})) |
36 | | preq2 4667 |
. . . . . . . . 9
⊢ (𝑤 = 𝐴 → {𝐵, 𝑤} = {𝐵, 𝐴}) |
37 | 36 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑤 = 𝐴 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ↔ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴})) |
38 | 35, 37 | rexprg 4629 |
. . . . . . 7
⊢ ((𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋) → (∃𝑤 ∈ {𝐶, 𝐴} (𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}))) |
39 | 38 | ancoms 458 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍) → (∃𝑤 ∈ {𝐶, 𝐴} (𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}))) |
40 | 39 | 3adant2 1129 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (∃𝑤 ∈ {𝐶, 𝐴} (𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}))) |
41 | | preq2 4667 |
. . . . . . . 8
⊢ (𝑤 = 𝐴 → {𝐶, 𝑤} = {𝐶, 𝐴}) |
42 | 41 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤} ↔ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴})) |
43 | | preq2 4667 |
. . . . . . . 8
⊢ (𝑤 = 𝐵 → {𝐶, 𝑤} = {𝐶, 𝐵}) |
44 | 43 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤} ↔ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵})) |
45 | 42, 44 | rexprg 4629 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (∃𝑤 ∈ {𝐴, 𝐵} (𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵}))) |
46 | 45 | 3adant3 1130 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (∃𝑤 ∈ {𝐴, 𝐵} (𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵}))) |
47 | 33, 40, 46 | 3orbi123d 1433 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((∃𝑤 ∈ {𝐵, 𝐶} (𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ∨ ∃𝑤 ∈ {𝐶, 𝐴} (𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ∨ ∃𝑤 ∈ {𝐴, 𝐵} (𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤}) ↔ (((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∨ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵})))) |
48 | 1, 47 | syl 17 |
. . 3
⊢ (𝜑 → ((∃𝑤 ∈ {𝐵, 𝐶} (𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ∨ ∃𝑤 ∈ {𝐶, 𝐴} (𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ∨ ∃𝑤 ∈ {𝐴, 𝐵} (𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤}) ↔ (((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∨ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵})))) |
49 | | nb3grpr.n |
. . . 4
⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) |
50 | | tprot 4682 |
. . . . . . . . 9
⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
51 | 50 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}) |
52 | 51 | difeq1d 4052 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) = ({𝐵, 𝐶, 𝐴} ∖ {𝐴})) |
53 | | necom 2996 |
. . . . . . . . 9
⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
54 | | necom 2996 |
. . . . . . . . 9
⊢ (𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴) |
55 | | diftpsn3 4732 |
. . . . . . . . 9
⊢ ((𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶}) |
56 | 53, 54, 55 | syl2anb 597 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶}) |
57 | 56 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶}) |
58 | 52, 57 | eqtrd 2778 |
. . . . . 6
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) = {𝐵, 𝐶}) |
59 | 58 | rexeqdv 3340 |
. . . . 5
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → (∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})(𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ↔ ∃𝑤 ∈ {𝐵, 𝐶} (𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤})) |
60 | | tprot 4682 |
. . . . . . . . . 10
⊢ {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶} |
61 | 60 | eqcomi 2747 |
. . . . . . . . 9
⊢ {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴, 𝐵} |
62 | 61 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴, 𝐵}) |
63 | 62 | difeq1d 4052 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) = ({𝐶, 𝐴, 𝐵} ∖ {𝐵})) |
64 | | necom 2996 |
. . . . . . . . . . . 12
⊢ (𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵) |
65 | 64 | anbi1i 623 |
. . . . . . . . . . 11
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ↔ (𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
66 | 65 | biimpi 215 |
. . . . . . . . . 10
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) → (𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
67 | 66 | ancoms 458 |
. . . . . . . . 9
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → (𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
68 | | diftpsn3 4732 |
. . . . . . . . 9
⊢ ((𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴}) |
69 | 67, 68 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴}) |
70 | 69 | 3adant2 1129 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴}) |
71 | 63, 70 | eqtrd 2778 |
. . . . . 6
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) = {𝐶, 𝐴}) |
72 | 71 | rexeqdv 3340 |
. . . . 5
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → (∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})(𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ↔ ∃𝑤 ∈ {𝐶, 𝐴} (𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤})) |
73 | | diftpsn3 4732 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵}) |
74 | 73 | 3adant1 1128 |
. . . . . 6
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵}) |
75 | 74 | rexeqdv 3340 |
. . . . 5
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → (∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})(𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤} ↔ ∃𝑤 ∈ {𝐴, 𝐵} (𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤})) |
76 | 59, 72, 75 | 3orbi123d 1433 |
. . . 4
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ((∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})(𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})(𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})(𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤}) ↔ (∃𝑤 ∈ {𝐵, 𝐶} (𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ∨ ∃𝑤 ∈ {𝐶, 𝐴} (𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ∨ ∃𝑤 ∈ {𝐴, 𝐵} (𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤}))) |
77 | 49, 76 | syl 17 |
. . 3
⊢ (𝜑 → ((∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})(𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})(𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})(𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤}) ↔ (∃𝑤 ∈ {𝐵, 𝐶} (𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ∨ ∃𝑤 ∈ {𝐶, 𝐴} (𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ∨ ∃𝑤 ∈ {𝐴, 𝐵} (𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤}))) |
78 | | prcom 4665 |
. . . . . . . 8
⊢ {𝐶, 𝐵} = {𝐵, 𝐶} |
79 | 78 | eqeq2i 2751 |
. . . . . . 7
⊢ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵} ↔ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) |
80 | 79 | orbi2i 909 |
. . . . . 6
⊢ (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵}) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶})) |
81 | | oridm 901 |
. . . . . 6
⊢ (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) ↔ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) |
82 | 80, 81 | bitr2i 275 |
. . . . 5
⊢ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵})) |
83 | 82 | a1i 11 |
. . . 4
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵}))) |
84 | | nbgrnself2 27630 |
. . . . . . 7
⊢ 𝐴 ∉ (𝐺 NeighbVtx 𝐴) |
85 | | df-nel 3049 |
. . . . . . . 8
⊢ (𝐴 ∉ (𝐺 NeighbVtx 𝐴) ↔ ¬ 𝐴 ∈ (𝐺 NeighbVtx 𝐴)) |
86 | | prid2g 4694 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ {𝐵, 𝐴}) |
87 | 86 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐴 ∈ {𝐵, 𝐴}) |
88 | | eleq2 2827 |
. . . . . . . . . 10
⊢ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴} → (𝐴 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐴 ∈ {𝐵, 𝐴})) |
89 | 87, 88 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴} → 𝐴 ∈ (𝐺 NeighbVtx 𝐴))) |
90 | 89 | con3rr3 155 |
. . . . . . . 8
⊢ (¬
𝐴 ∈ (𝐺 NeighbVtx 𝐴) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ¬ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴})) |
91 | 85, 90 | sylbi 216 |
. . . . . . 7
⊢ (𝐴 ∉ (𝐺 NeighbVtx 𝐴) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ¬ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴})) |
92 | 84, 1, 91 | mpsyl 68 |
. . . . . 6
⊢ (𝜑 → ¬ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}) |
93 | | biorf 933 |
. . . . . . 7
⊢ (¬
(𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴} → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}))) |
94 | | orcom 866 |
. . . . . . 7
⊢ (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴})) |
95 | 93, 94 | bitrdi 286 |
. . . . . 6
⊢ (¬
(𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴} → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}))) |
96 | 92, 95 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}))) |
97 | | prid2g 4694 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ {𝐶, 𝐴}) |
98 | 97 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐴 ∈ {𝐶, 𝐴}) |
99 | | eleq2 2827 |
. . . . . . . . . 10
⊢ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} → (𝐴 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐴 ∈ {𝐶, 𝐴})) |
100 | 98, 99 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} → 𝐴 ∈ (𝐺 NeighbVtx 𝐴))) |
101 | 100 | con3rr3 155 |
. . . . . . . 8
⊢ (¬
𝐴 ∈ (𝐺 NeighbVtx 𝐴) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ¬ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴})) |
102 | 85, 101 | sylbi 216 |
. . . . . . 7
⊢ (𝐴 ∉ (𝐺 NeighbVtx 𝐴) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ¬ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴})) |
103 | 84, 1, 102 | mpsyl 68 |
. . . . . 6
⊢ (𝜑 → ¬ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴}) |
104 | | biorf 933 |
. . . . . 6
⊢ (¬
(𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} → ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵}))) |
105 | 103, 104 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵}))) |
106 | 96, 105 | orbi12d 915 |
. . . 4
⊢ (𝜑 → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵}) ↔ (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵})))) |
107 | | prid1g 4693 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ {𝐴, 𝐵}) |
108 | 107 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐴 ∈ {𝐴, 𝐵}) |
109 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ ((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} → (𝐴 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐴 ∈ {𝐴, 𝐵})) |
110 | 108, 109 | syl5ibrcom 246 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} → 𝐴 ∈ (𝐺 NeighbVtx 𝐴))) |
111 | 110 | con3dimp 408 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ¬ 𝐴 ∈ (𝐺 NeighbVtx 𝐴)) → ¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵}) |
112 | | prid1g 4693 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ {𝐴, 𝐶}) |
113 | 112 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐴 ∈ {𝐴, 𝐶}) |
114 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ ((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶} → (𝐴 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐴 ∈ {𝐴, 𝐶})) |
115 | 113, 114 | syl5ibrcom 246 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶} → 𝐴 ∈ (𝐺 NeighbVtx 𝐴))) |
116 | 115 | con3dimp 408 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ¬ 𝐴 ∈ (𝐺 NeighbVtx 𝐴)) → ¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}) |
117 | 111, 116 | jca 511 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ¬ 𝐴 ∈ (𝐺 NeighbVtx 𝐴)) → (¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∧ ¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶})) |
118 | 117 | expcom 413 |
. . . . . . . 8
⊢ (¬
𝐴 ∈ (𝐺 NeighbVtx 𝐴) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∧ ¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}))) |
119 | 85, 118 | sylbi 216 |
. . . . . . 7
⊢ (𝐴 ∉ (𝐺 NeighbVtx 𝐴) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∧ ¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}))) |
120 | 84, 1, 119 | mpsyl 68 |
. . . . . 6
⊢ (𝜑 → (¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∧ ¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶})) |
121 | | ioran 980 |
. . . . . 6
⊢ (¬
((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∨ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}) ↔ (¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∧ ¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶})) |
122 | 120, 121 | sylibr 233 |
. . . . 5
⊢ (𝜑 → ¬ ((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∨ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶})) |
123 | 122 | 3bior1fd 1473 |
. . . 4
⊢ (𝜑 → ((((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵})) ↔ (((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∨ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵})))) |
124 | 83, 106, 123 | 3bitrd 304 |
. . 3
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ (((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∨ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵})))) |
125 | 48, 77, 124 | 3bitr4rd 311 |
. 2
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ (∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})(𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})(𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})(𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤}))) |
126 | 18, 27, 125 | 3bitr4rd 311 |
1
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ∃𝑣 ∈ 𝑉 ∃𝑤 ∈ (𝑉 ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤})) |