Proof of Theorem nb3grprlem2
| Step | Hyp | Ref
| Expression |
| 1 | | nb3grpr.s |
. . 3
⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) |
| 2 | | sneq 4636 |
. . . . . 6
⊢ (𝑣 = 𝐴 → {𝑣} = {𝐴}) |
| 3 | 2 | difeq2d 4126 |
. . . . 5
⊢ (𝑣 = 𝐴 → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐴})) |
| 4 | | preq1 4733 |
. . . . . 6
⊢ (𝑣 = 𝐴 → {𝑣, 𝑤} = {𝐴, 𝑤}) |
| 5 | 4 | eqeq2d 2748 |
. . . . 5
⊢ (𝑣 = 𝐴 → ((𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤})) |
| 6 | 3, 5 | rexeqbidv 3347 |
. . . 4
⊢ (𝑣 = 𝐴 → (∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})(𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤})) |
| 7 | | sneq 4636 |
. . . . . 6
⊢ (𝑣 = 𝐵 → {𝑣} = {𝐵}) |
| 8 | 7 | difeq2d 4126 |
. . . . 5
⊢ (𝑣 = 𝐵 → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐵})) |
| 9 | | preq1 4733 |
. . . . . 6
⊢ (𝑣 = 𝐵 → {𝑣, 𝑤} = {𝐵, 𝑤}) |
| 10 | 9 | eqeq2d 2748 |
. . . . 5
⊢ (𝑣 = 𝐵 → ((𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤})) |
| 11 | 8, 10 | rexeqbidv 3347 |
. . . 4
⊢ (𝑣 = 𝐵 → (∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})(𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤})) |
| 12 | | sneq 4636 |
. . . . . 6
⊢ (𝑣 = 𝐶 → {𝑣} = {𝐶}) |
| 13 | 12 | difeq2d 4126 |
. . . . 5
⊢ (𝑣 = 𝐶 → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐶})) |
| 14 | | preq1 4733 |
. . . . . 6
⊢ (𝑣 = 𝐶 → {𝑣, 𝑤} = {𝐶, 𝑤}) |
| 15 | 14 | eqeq2d 2748 |
. . . . 5
⊢ (𝑣 = 𝐶 → ((𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤})) |
| 16 | 13, 15 | rexeqbidv 3347 |
. . . 4
⊢ (𝑣 = 𝐶 → (∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})(𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤})) |
| 17 | 6, 11, 16 | rextpg 4699 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (∃𝑣 ∈ {𝐴, 𝐵, 𝐶}∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ (∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})(𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})(𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})(𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤}))) |
| 18 | 1, 17 | syl 17 |
. 2
⊢ (𝜑 → (∃𝑣 ∈ {𝐴, 𝐵, 𝐶}∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ (∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})(𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})(𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})(𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤}))) |
| 19 | | nb3grpr.t |
. . . 4
⊢ (𝜑 → 𝑉 = {𝐴, 𝐵, 𝐶}) |
| 20 | | nb3grpr.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ USGraph) |
| 21 | 19, 20 | jca 511 |
. . 3
⊢ (𝜑 → (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) |
| 22 | | simpl 482 |
. . . 4
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → 𝑉 = {𝐴, 𝐵, 𝐶}) |
| 23 | | difeq1 4119 |
. . . . . 6
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → (𝑉 ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝑣})) |
| 24 | 23 | adantr 480 |
. . . . 5
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (𝑉 ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝑣})) |
| 25 | 24 | rexeqdv 3327 |
. . . 4
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (∃𝑤 ∈ (𝑉 ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤})) |
| 26 | 22, 25 | rexeqbidv 3347 |
. . 3
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (∃𝑣 ∈ 𝑉 ∃𝑤 ∈ (𝑉 ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ ∃𝑣 ∈ {𝐴, 𝐵, 𝐶}∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤})) |
| 27 | 21, 26 | syl 17 |
. 2
⊢ (𝜑 → (∃𝑣 ∈ 𝑉 ∃𝑤 ∈ (𝑉 ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤} ↔ ∃𝑣 ∈ {𝐴, 𝐵, 𝐶}∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤})) |
| 28 | | preq2 4734 |
. . . . . . . 8
⊢ (𝑤 = 𝐵 → {𝐴, 𝑤} = {𝐴, 𝐵}) |
| 29 | 28 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → ((𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ↔ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵})) |
| 30 | | preq2 4734 |
. . . . . . . 8
⊢ (𝑤 = 𝐶 → {𝐴, 𝑤} = {𝐴, 𝐶}) |
| 31 | 30 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝑤 = 𝐶 → ((𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ↔ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶})) |
| 32 | 29, 31 | rexprg 4697 |
. . . . . 6
⊢ ((𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (∃𝑤 ∈ {𝐵, 𝐶} (𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∨ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}))) |
| 33 | 32 | 3adant1 1131 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (∃𝑤 ∈ {𝐵, 𝐶} (𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∨ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}))) |
| 34 | | preq2 4734 |
. . . . . . . . 9
⊢ (𝑤 = 𝐶 → {𝐵, 𝑤} = {𝐵, 𝐶}) |
| 35 | 34 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑤 = 𝐶 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ↔ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶})) |
| 36 | | preq2 4734 |
. . . . . . . . 9
⊢ (𝑤 = 𝐴 → {𝐵, 𝑤} = {𝐵, 𝐴}) |
| 37 | 36 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑤 = 𝐴 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ↔ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴})) |
| 38 | 35, 37 | rexprg 4697 |
. . . . . . 7
⊢ ((𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋) → (∃𝑤 ∈ {𝐶, 𝐴} (𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}))) |
| 39 | 38 | ancoms 458 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍) → (∃𝑤 ∈ {𝐶, 𝐴} (𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}))) |
| 40 | 39 | 3adant2 1132 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (∃𝑤 ∈ {𝐶, 𝐴} (𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}))) |
| 41 | | preq2 4734 |
. . . . . . . 8
⊢ (𝑤 = 𝐴 → {𝐶, 𝑤} = {𝐶, 𝐴}) |
| 42 | 41 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤} ↔ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴})) |
| 43 | | preq2 4734 |
. . . . . . . 8
⊢ (𝑤 = 𝐵 → {𝐶, 𝑤} = {𝐶, 𝐵}) |
| 44 | 43 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤} ↔ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵})) |
| 45 | 42, 44 | rexprg 4697 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (∃𝑤 ∈ {𝐴, 𝐵} (𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵}))) |
| 46 | 45 | 3adant3 1133 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (∃𝑤 ∈ {𝐴, 𝐵} (𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵}))) |
| 47 | 33, 40, 46 | 3orbi123d 1437 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((∃𝑤 ∈ {𝐵, 𝐶} (𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ∨ ∃𝑤 ∈ {𝐶, 𝐴} (𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ∨ ∃𝑤 ∈ {𝐴, 𝐵} (𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤}) ↔ (((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∨ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵})))) |
| 48 | 1, 47 | syl 17 |
. . 3
⊢ (𝜑 → ((∃𝑤 ∈ {𝐵, 𝐶} (𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ∨ ∃𝑤 ∈ {𝐶, 𝐴} (𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ∨ ∃𝑤 ∈ {𝐴, 𝐵} (𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤}) ↔ (((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∨ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵})))) |
| 49 | | nb3grpr.n |
. . . 4
⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) |
| 50 | | tprot 4749 |
. . . . . . . . 9
⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
| 51 | 50 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}) |
| 52 | 51 | difeq1d 4125 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) = ({𝐵, 𝐶, 𝐴} ∖ {𝐴})) |
| 53 | | necom 2994 |
. . . . . . . . 9
⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
| 54 | | necom 2994 |
. . . . . . . . 9
⊢ (𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴) |
| 55 | | diftpsn3 4802 |
. . . . . . . . 9
⊢ ((𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶}) |
| 56 | 53, 54, 55 | syl2anb 598 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶}) |
| 57 | 56 | 3adant3 1133 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶}) |
| 58 | 52, 57 | eqtrd 2777 |
. . . . . 6
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) = {𝐵, 𝐶}) |
| 59 | 58 | rexeqdv 3327 |
. . . . 5
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → (∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})(𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ↔ ∃𝑤 ∈ {𝐵, 𝐶} (𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤})) |
| 60 | | tprot 4749 |
. . . . . . . . . 10
⊢ {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶} |
| 61 | 60 | eqcomi 2746 |
. . . . . . . . 9
⊢ {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴, 𝐵} |
| 62 | 61 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴, 𝐵}) |
| 63 | 62 | difeq1d 4125 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) = ({𝐶, 𝐴, 𝐵} ∖ {𝐵})) |
| 64 | | necom 2994 |
. . . . . . . . . . . 12
⊢ (𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵) |
| 65 | 64 | anbi1i 624 |
. . . . . . . . . . 11
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ↔ (𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
| 66 | 65 | biimpi 216 |
. . . . . . . . . 10
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) → (𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
| 67 | 66 | ancoms 458 |
. . . . . . . . 9
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → (𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
| 68 | | diftpsn3 4802 |
. . . . . . . . 9
⊢ ((𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴}) |
| 69 | 67, 68 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴}) |
| 70 | 69 | 3adant2 1132 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴}) |
| 71 | 63, 70 | eqtrd 2777 |
. . . . . 6
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) = {𝐶, 𝐴}) |
| 72 | 71 | rexeqdv 3327 |
. . . . 5
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → (∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})(𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ↔ ∃𝑤 ∈ {𝐶, 𝐴} (𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤})) |
| 73 | | diftpsn3 4802 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵}) |
| 74 | 73 | 3adant1 1131 |
. . . . . 6
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵}) |
| 75 | 74 | rexeqdv 3327 |
. . . . 5
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → (∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})(𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤} ↔ ∃𝑤 ∈ {𝐴, 𝐵} (𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤})) |
| 76 | 59, 72, 75 | 3orbi123d 1437 |
. . . 4
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ((∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})(𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})(𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})(𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤}) ↔ (∃𝑤 ∈ {𝐵, 𝐶} (𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ∨ ∃𝑤 ∈ {𝐶, 𝐴} (𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ∨ ∃𝑤 ∈ {𝐴, 𝐵} (𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤}))) |
| 77 | 49, 76 | syl 17 |
. . 3
⊢ (𝜑 → ((∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})(𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})(𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})(𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤}) ↔ (∃𝑤 ∈ {𝐵, 𝐶} (𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ∨ ∃𝑤 ∈ {𝐶, 𝐴} (𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ∨ ∃𝑤 ∈ {𝐴, 𝐵} (𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤}))) |
| 78 | | prcom 4732 |
. . . . . . . 8
⊢ {𝐶, 𝐵} = {𝐵, 𝐶} |
| 79 | 78 | eqeq2i 2750 |
. . . . . . 7
⊢ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵} ↔ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) |
| 80 | 79 | orbi2i 913 |
. . . . . 6
⊢ (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵}) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶})) |
| 81 | | oridm 905 |
. . . . . 6
⊢ (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) ↔ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) |
| 82 | 80, 81 | bitr2i 276 |
. . . . 5
⊢ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵})) |
| 83 | 82 | a1i 11 |
. . . 4
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵}))) |
| 84 | | nbgrnself2 29377 |
. . . . . . 7
⊢ 𝐴 ∉ (𝐺 NeighbVtx 𝐴) |
| 85 | | df-nel 3047 |
. . . . . . . 8
⊢ (𝐴 ∉ (𝐺 NeighbVtx 𝐴) ↔ ¬ 𝐴 ∈ (𝐺 NeighbVtx 𝐴)) |
| 86 | | prid2g 4761 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ {𝐵, 𝐴}) |
| 87 | 86 | 3ad2ant1 1134 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐴 ∈ {𝐵, 𝐴}) |
| 88 | | eleq2 2830 |
. . . . . . . . . 10
⊢ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴} → (𝐴 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐴 ∈ {𝐵, 𝐴})) |
| 89 | 87, 88 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴} → 𝐴 ∈ (𝐺 NeighbVtx 𝐴))) |
| 90 | 89 | con3rr3 155 |
. . . . . . . 8
⊢ (¬
𝐴 ∈ (𝐺 NeighbVtx 𝐴) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ¬ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴})) |
| 91 | 85, 90 | sylbi 217 |
. . . . . . 7
⊢ (𝐴 ∉ (𝐺 NeighbVtx 𝐴) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ¬ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴})) |
| 92 | 84, 1, 91 | mpsyl 68 |
. . . . . 6
⊢ (𝜑 → ¬ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}) |
| 93 | | biorf 937 |
. . . . . . 7
⊢ (¬
(𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴} → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}))) |
| 94 | | orcom 871 |
. . . . . . 7
⊢ (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴})) |
| 95 | 93, 94 | bitrdi 287 |
. . . . . 6
⊢ (¬
(𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴} → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}))) |
| 96 | 92, 95 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}))) |
| 97 | | prid2g 4761 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ {𝐶, 𝐴}) |
| 98 | 97 | 3ad2ant1 1134 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐴 ∈ {𝐶, 𝐴}) |
| 99 | | eleq2 2830 |
. . . . . . . . . 10
⊢ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} → (𝐴 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐴 ∈ {𝐶, 𝐴})) |
| 100 | 98, 99 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} → 𝐴 ∈ (𝐺 NeighbVtx 𝐴))) |
| 101 | 100 | con3rr3 155 |
. . . . . . . 8
⊢ (¬
𝐴 ∈ (𝐺 NeighbVtx 𝐴) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ¬ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴})) |
| 102 | 85, 101 | sylbi 217 |
. . . . . . 7
⊢ (𝐴 ∉ (𝐺 NeighbVtx 𝐴) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ¬ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴})) |
| 103 | 84, 1, 102 | mpsyl 68 |
. . . . . 6
⊢ (𝜑 → ¬ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴}) |
| 104 | | biorf 937 |
. . . . . 6
⊢ (¬
(𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} → ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵}))) |
| 105 | 103, 104 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵} ↔ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵}))) |
| 106 | 96, 105 | orbi12d 919 |
. . . 4
⊢ (𝜑 → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵}) ↔ (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵})))) |
| 107 | | prid1g 4760 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ {𝐴, 𝐵}) |
| 108 | 107 | 3ad2ant1 1134 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐴 ∈ {𝐴, 𝐵}) |
| 109 | | eleq2 2830 |
. . . . . . . . . . . 12
⊢ ((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} → (𝐴 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐴 ∈ {𝐴, 𝐵})) |
| 110 | 108, 109 | syl5ibrcom 247 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} → 𝐴 ∈ (𝐺 NeighbVtx 𝐴))) |
| 111 | 110 | con3dimp 408 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ¬ 𝐴 ∈ (𝐺 NeighbVtx 𝐴)) → ¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵}) |
| 112 | | prid1g 4760 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ {𝐴, 𝐶}) |
| 113 | 112 | 3ad2ant1 1134 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐴 ∈ {𝐴, 𝐶}) |
| 114 | | eleq2 2830 |
. . . . . . . . . . . 12
⊢ ((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶} → (𝐴 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐴 ∈ {𝐴, 𝐶})) |
| 115 | 113, 114 | syl5ibrcom 247 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶} → 𝐴 ∈ (𝐺 NeighbVtx 𝐴))) |
| 116 | 115 | con3dimp 408 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ¬ 𝐴 ∈ (𝐺 NeighbVtx 𝐴)) → ¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}) |
| 117 | 111, 116 | jca 511 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ¬ 𝐴 ∈ (𝐺 NeighbVtx 𝐴)) → (¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∧ ¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶})) |
| 118 | 117 | expcom 413 |
. . . . . . . 8
⊢ (¬
𝐴 ∈ (𝐺 NeighbVtx 𝐴) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∧ ¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}))) |
| 119 | 85, 118 | sylbi 217 |
. . . . . . 7
⊢ (𝐴 ∉ (𝐺 NeighbVtx 𝐴) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∧ ¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}))) |
| 120 | 84, 1, 119 | mpsyl 68 |
. . . . . 6
⊢ (𝜑 → (¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∧ ¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶})) |
| 121 | | ioran 986 |
. . . . . 6
⊢ (¬
((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∨ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}) ↔ (¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∧ ¬ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶})) |
| 122 | 120, 121 | sylibr 234 |
. . . . 5
⊢ (𝜑 → ¬ ((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∨ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶})) |
| 123 | 122 | 3bior1fd 1477 |
. . . 4
⊢ (𝜑 → ((((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵})) ↔ (((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∨ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵})))) |
| 124 | 83, 106, 123 | 3bitrd 305 |
. . 3
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ (((𝐺 NeighbVtx 𝐴) = {𝐴, 𝐵} ∨ (𝐺 NeighbVtx 𝐴) = {𝐴, 𝐶}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∨ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐴}) ∨ ((𝐺 NeighbVtx 𝐴) = {𝐶, 𝐴} ∨ (𝐺 NeighbVtx 𝐴) = {𝐶, 𝐵})))) |
| 125 | 48, 77, 124 | 3bitr4rd 312 |
. 2
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ (∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})(𝐺 NeighbVtx 𝐴) = {𝐴, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})(𝐺 NeighbVtx 𝐴) = {𝐵, 𝑤} ∨ ∃𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})(𝐺 NeighbVtx 𝐴) = {𝐶, 𝑤}))) |
| 126 | 18, 27, 125 | 3bitr4rd 312 |
1
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ∃𝑣 ∈ 𝑉 ∃𝑤 ∈ (𝑉 ∖ {𝑣})(𝐺 NeighbVtx 𝐴) = {𝑣, 𝑤})) |