Step | Hyp | Ref
| Expression |
1 | | relexpss1d.n |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
2 | | elnn0 12165 |
. . 3
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
3 | 1, 2 | sylib 217 |
. 2
⊢ (𝜑 → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
4 | | oveq2 7263 |
. . . . . 6
⊢ (𝑥 = 1 → (𝐴↑𝑟𝑥) = (𝐴↑𝑟1)) |
5 | | oveq2 7263 |
. . . . . 6
⊢ (𝑥 = 1 → (𝐵↑𝑟𝑥) = (𝐵↑𝑟1)) |
6 | 4, 5 | sseq12d 3950 |
. . . . 5
⊢ (𝑥 = 1 → ((𝐴↑𝑟𝑥) ⊆ (𝐵↑𝑟𝑥) ↔ (𝐴↑𝑟1) ⊆ (𝐵↑𝑟1))) |
7 | 6 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 1 → ((𝜑 → (𝐴↑𝑟𝑥) ⊆ (𝐵↑𝑟𝑥)) ↔ (𝜑 → (𝐴↑𝑟1) ⊆ (𝐵↑𝑟1)))) |
8 | | oveq2 7263 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐴↑𝑟𝑥) = (𝐴↑𝑟𝑦)) |
9 | | oveq2 7263 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐵↑𝑟𝑥) = (𝐵↑𝑟𝑦)) |
10 | 8, 9 | sseq12d 3950 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐴↑𝑟𝑥) ⊆ (𝐵↑𝑟𝑥) ↔ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦))) |
11 | 10 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝜑 → (𝐴↑𝑟𝑥) ⊆ (𝐵↑𝑟𝑥)) ↔ (𝜑 → (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)))) |
12 | | oveq2 7263 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → (𝐴↑𝑟𝑥) = (𝐴↑𝑟(𝑦 + 1))) |
13 | | oveq2 7263 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → (𝐵↑𝑟𝑥) = (𝐵↑𝑟(𝑦 + 1))) |
14 | 12, 13 | sseq12d 3950 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → ((𝐴↑𝑟𝑥) ⊆ (𝐵↑𝑟𝑥) ↔ (𝐴↑𝑟(𝑦 + 1)) ⊆ (𝐵↑𝑟(𝑦 + 1)))) |
15 | 14 | imbi2d 340 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → ((𝜑 → (𝐴↑𝑟𝑥) ⊆ (𝐵↑𝑟𝑥)) ↔ (𝜑 → (𝐴↑𝑟(𝑦 + 1)) ⊆ (𝐵↑𝑟(𝑦 + 1))))) |
16 | | oveq2 7263 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝐴↑𝑟𝑥) = (𝐴↑𝑟𝑁)) |
17 | | oveq2 7263 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝐵↑𝑟𝑥) = (𝐵↑𝑟𝑁)) |
18 | 16, 17 | sseq12d 3950 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝐴↑𝑟𝑥) ⊆ (𝐵↑𝑟𝑥) ↔ (𝐴↑𝑟𝑁) ⊆ (𝐵↑𝑟𝑁))) |
19 | 18 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝜑 → (𝐴↑𝑟𝑥) ⊆ (𝐵↑𝑟𝑥)) ↔ (𝜑 → (𝐴↑𝑟𝑁) ⊆ (𝐵↑𝑟𝑁)))) |
20 | | relexpss1d.a |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
21 | | relexpss1d.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ V) |
22 | 21, 20 | ssexd 5243 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ V) |
23 | 22 | relexp1d 14668 |
. . . . 5
⊢ (𝜑 → (𝐴↑𝑟1) = 𝐴) |
24 | 21 | relexp1d 14668 |
. . . . 5
⊢ (𝜑 → (𝐵↑𝑟1) = 𝐵) |
25 | 20, 23, 24 | 3sstr4d 3964 |
. . . 4
⊢ (𝜑 → (𝐴↑𝑟1) ⊆ (𝐵↑𝑟1)) |
26 | | simp3 1136 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) |
27 | 20 | 3ad2ant2 1132 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → 𝐴 ⊆ 𝐵) |
28 | 26, 27 | coss12d 14611 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → ((𝐴↑𝑟𝑦) ∘ 𝐴) ⊆ ((𝐵↑𝑟𝑦) ∘ 𝐵)) |
29 | 22 | 3ad2ant2 1132 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → 𝐴 ∈ V) |
30 | | simp1 1134 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → 𝑦 ∈ ℕ) |
31 | | relexpsucnnr 14664 |
. . . . . . . 8
⊢ ((𝐴 ∈ V ∧ 𝑦 ∈ ℕ) → (𝐴↑𝑟(𝑦 + 1)) = ((𝐴↑𝑟𝑦) ∘ 𝐴)) |
32 | 29, 30, 31 | syl2anc 583 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → (𝐴↑𝑟(𝑦 + 1)) = ((𝐴↑𝑟𝑦) ∘ 𝐴)) |
33 | 21 | 3ad2ant2 1132 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → 𝐵 ∈ V) |
34 | | relexpsucnnr 14664 |
. . . . . . . 8
⊢ ((𝐵 ∈ V ∧ 𝑦 ∈ ℕ) → (𝐵↑𝑟(𝑦 + 1)) = ((𝐵↑𝑟𝑦) ∘ 𝐵)) |
35 | 33, 30, 34 | syl2anc 583 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → (𝐵↑𝑟(𝑦 + 1)) = ((𝐵↑𝑟𝑦) ∘ 𝐵)) |
36 | 28, 32, 35 | 3sstr4d 3964 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → (𝐴↑𝑟(𝑦 + 1)) ⊆ (𝐵↑𝑟(𝑦 + 1))) |
37 | 36 | 3exp 1117 |
. . . . 5
⊢ (𝑦 ∈ ℕ → (𝜑 → ((𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦) → (𝐴↑𝑟(𝑦 + 1)) ⊆ (𝐵↑𝑟(𝑦 + 1))))) |
38 | 37 | a2d 29 |
. . . 4
⊢ (𝑦 ∈ ℕ → ((𝜑 → (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → (𝜑 → (𝐴↑𝑟(𝑦 + 1)) ⊆ (𝐵↑𝑟(𝑦 + 1))))) |
39 | 7, 11, 15, 19, 25, 38 | nnind 11921 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝜑 → (𝐴↑𝑟𝑁) ⊆ (𝐵↑𝑟𝑁))) |
40 | | simpr 484 |
. . . . . 6
⊢ ((𝑁 = 0 ∧ 𝜑) → 𝜑) |
41 | | dmss 5800 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
42 | | rnss 5837 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
43 | 41, 42 | jca 511 |
. . . . . . 7
⊢ (𝐴 ⊆ 𝐵 → (dom 𝐴 ⊆ dom 𝐵 ∧ ran 𝐴 ⊆ ran 𝐵)) |
44 | | unss12 4112 |
. . . . . . 7
⊢ ((dom
𝐴 ⊆ dom 𝐵 ∧ ran 𝐴 ⊆ ran 𝐵) → (dom 𝐴 ∪ ran 𝐴) ⊆ (dom 𝐵 ∪ ran 𝐵)) |
45 | 20, 43, 44 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (dom 𝐴 ∪ ran 𝐴) ⊆ (dom 𝐵 ∪ ran 𝐵)) |
46 | | ssres2 5908 |
. . . . . 6
⊢ ((dom
𝐴 ∪ ran 𝐴) ⊆ (dom 𝐵 ∪ ran 𝐵) → ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ ( I ↾ (dom 𝐵 ∪ ran 𝐵))) |
47 | 40, 45, 46 | 3syl 18 |
. . . . 5
⊢ ((𝑁 = 0 ∧ 𝜑) → ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ ( I ↾ (dom 𝐵 ∪ ran 𝐵))) |
48 | | simpl 482 |
. . . . . . 7
⊢ ((𝑁 = 0 ∧ 𝜑) → 𝑁 = 0) |
49 | 48 | oveq2d 7271 |
. . . . . 6
⊢ ((𝑁 = 0 ∧ 𝜑) → (𝐴↑𝑟𝑁) = (𝐴↑𝑟0)) |
50 | | relexp0g 14661 |
. . . . . . 7
⊢ (𝐴 ∈ V → (𝐴↑𝑟0) = (
I ↾ (dom 𝐴 ∪ ran
𝐴))) |
51 | 40, 22, 50 | 3syl 18 |
. . . . . 6
⊢ ((𝑁 = 0 ∧ 𝜑) → (𝐴↑𝑟0) = ( I ↾
(dom 𝐴 ∪ ran 𝐴))) |
52 | 49, 51 | eqtrd 2778 |
. . . . 5
⊢ ((𝑁 = 0 ∧ 𝜑) → (𝐴↑𝑟𝑁) = ( I ↾ (dom 𝐴 ∪ ran 𝐴))) |
53 | 48 | oveq2d 7271 |
. . . . . 6
⊢ ((𝑁 = 0 ∧ 𝜑) → (𝐵↑𝑟𝑁) = (𝐵↑𝑟0)) |
54 | | relexp0g 14661 |
. . . . . . 7
⊢ (𝐵 ∈ V → (𝐵↑𝑟0) = (
I ↾ (dom 𝐵 ∪ ran
𝐵))) |
55 | 40, 21, 54 | 3syl 18 |
. . . . . 6
⊢ ((𝑁 = 0 ∧ 𝜑) → (𝐵↑𝑟0) = ( I ↾
(dom 𝐵 ∪ ran 𝐵))) |
56 | 53, 55 | eqtrd 2778 |
. . . . 5
⊢ ((𝑁 = 0 ∧ 𝜑) → (𝐵↑𝑟𝑁) = ( I ↾ (dom 𝐵 ∪ ran 𝐵))) |
57 | 47, 52, 56 | 3sstr4d 3964 |
. . . 4
⊢ ((𝑁 = 0 ∧ 𝜑) → (𝐴↑𝑟𝑁) ⊆ (𝐵↑𝑟𝑁)) |
58 | 57 | ex 412 |
. . 3
⊢ (𝑁 = 0 → (𝜑 → (𝐴↑𝑟𝑁) ⊆ (𝐵↑𝑟𝑁))) |
59 | 39, 58 | jaoi 853 |
. 2
⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝜑 → (𝐴↑𝑟𝑁) ⊆ (𝐵↑𝑟𝑁))) |
60 | 3, 59 | mpcom 38 |
1
⊢ (𝜑 → (𝐴↑𝑟𝑁) ⊆ (𝐵↑𝑟𝑁)) |