| Step | Hyp | Ref
| Expression |
| 1 | | relexpss1d.n |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 2 | | elnn0 12528 |
. . 3
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
| 3 | 1, 2 | sylib 218 |
. 2
⊢ (𝜑 → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
| 4 | | oveq2 7439 |
. . . . . 6
⊢ (𝑥 = 1 → (𝐴↑𝑟𝑥) = (𝐴↑𝑟1)) |
| 5 | | oveq2 7439 |
. . . . . 6
⊢ (𝑥 = 1 → (𝐵↑𝑟𝑥) = (𝐵↑𝑟1)) |
| 6 | 4, 5 | sseq12d 4017 |
. . . . 5
⊢ (𝑥 = 1 → ((𝐴↑𝑟𝑥) ⊆ (𝐵↑𝑟𝑥) ↔ (𝐴↑𝑟1) ⊆ (𝐵↑𝑟1))) |
| 7 | 6 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 1 → ((𝜑 → (𝐴↑𝑟𝑥) ⊆ (𝐵↑𝑟𝑥)) ↔ (𝜑 → (𝐴↑𝑟1) ⊆ (𝐵↑𝑟1)))) |
| 8 | | oveq2 7439 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐴↑𝑟𝑥) = (𝐴↑𝑟𝑦)) |
| 9 | | oveq2 7439 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐵↑𝑟𝑥) = (𝐵↑𝑟𝑦)) |
| 10 | 8, 9 | sseq12d 4017 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐴↑𝑟𝑥) ⊆ (𝐵↑𝑟𝑥) ↔ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦))) |
| 11 | 10 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝜑 → (𝐴↑𝑟𝑥) ⊆ (𝐵↑𝑟𝑥)) ↔ (𝜑 → (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)))) |
| 12 | | oveq2 7439 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → (𝐴↑𝑟𝑥) = (𝐴↑𝑟(𝑦 + 1))) |
| 13 | | oveq2 7439 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → (𝐵↑𝑟𝑥) = (𝐵↑𝑟(𝑦 + 1))) |
| 14 | 12, 13 | sseq12d 4017 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → ((𝐴↑𝑟𝑥) ⊆ (𝐵↑𝑟𝑥) ↔ (𝐴↑𝑟(𝑦 + 1)) ⊆ (𝐵↑𝑟(𝑦 + 1)))) |
| 15 | 14 | imbi2d 340 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → ((𝜑 → (𝐴↑𝑟𝑥) ⊆ (𝐵↑𝑟𝑥)) ↔ (𝜑 → (𝐴↑𝑟(𝑦 + 1)) ⊆ (𝐵↑𝑟(𝑦 + 1))))) |
| 16 | | oveq2 7439 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝐴↑𝑟𝑥) = (𝐴↑𝑟𝑁)) |
| 17 | | oveq2 7439 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝐵↑𝑟𝑥) = (𝐵↑𝑟𝑁)) |
| 18 | 16, 17 | sseq12d 4017 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝐴↑𝑟𝑥) ⊆ (𝐵↑𝑟𝑥) ↔ (𝐴↑𝑟𝑁) ⊆ (𝐵↑𝑟𝑁))) |
| 19 | 18 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝜑 → (𝐴↑𝑟𝑥) ⊆ (𝐵↑𝑟𝑥)) ↔ (𝜑 → (𝐴↑𝑟𝑁) ⊆ (𝐵↑𝑟𝑁)))) |
| 20 | | relexpss1d.a |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 21 | | relexpss1d.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ V) |
| 22 | 21, 20 | ssexd 5324 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ V) |
| 23 | 22 | relexp1d 15068 |
. . . . 5
⊢ (𝜑 → (𝐴↑𝑟1) = 𝐴) |
| 24 | 21 | relexp1d 15068 |
. . . . 5
⊢ (𝜑 → (𝐵↑𝑟1) = 𝐵) |
| 25 | 20, 23, 24 | 3sstr4d 4039 |
. . . 4
⊢ (𝜑 → (𝐴↑𝑟1) ⊆ (𝐵↑𝑟1)) |
| 26 | | simp3 1139 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) |
| 27 | 20 | 3ad2ant2 1135 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → 𝐴 ⊆ 𝐵) |
| 28 | 26, 27 | coss12d 15011 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → ((𝐴↑𝑟𝑦) ∘ 𝐴) ⊆ ((𝐵↑𝑟𝑦) ∘ 𝐵)) |
| 29 | 22 | 3ad2ant2 1135 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → 𝐴 ∈ V) |
| 30 | | simp1 1137 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → 𝑦 ∈ ℕ) |
| 31 | | relexpsucnnr 15064 |
. . . . . . . 8
⊢ ((𝐴 ∈ V ∧ 𝑦 ∈ ℕ) → (𝐴↑𝑟(𝑦 + 1)) = ((𝐴↑𝑟𝑦) ∘ 𝐴)) |
| 32 | 29, 30, 31 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → (𝐴↑𝑟(𝑦 + 1)) = ((𝐴↑𝑟𝑦) ∘ 𝐴)) |
| 33 | 21 | 3ad2ant2 1135 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → 𝐵 ∈ V) |
| 34 | | relexpsucnnr 15064 |
. . . . . . . 8
⊢ ((𝐵 ∈ V ∧ 𝑦 ∈ ℕ) → (𝐵↑𝑟(𝑦 + 1)) = ((𝐵↑𝑟𝑦) ∘ 𝐵)) |
| 35 | 33, 30, 34 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → (𝐵↑𝑟(𝑦 + 1)) = ((𝐵↑𝑟𝑦) ∘ 𝐵)) |
| 36 | 28, 32, 35 | 3sstr4d 4039 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → (𝐴↑𝑟(𝑦 + 1)) ⊆ (𝐵↑𝑟(𝑦 + 1))) |
| 37 | 36 | 3exp 1120 |
. . . . 5
⊢ (𝑦 ∈ ℕ → (𝜑 → ((𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦) → (𝐴↑𝑟(𝑦 + 1)) ⊆ (𝐵↑𝑟(𝑦 + 1))))) |
| 38 | 37 | a2d 29 |
. . . 4
⊢ (𝑦 ∈ ℕ → ((𝜑 → (𝐴↑𝑟𝑦) ⊆ (𝐵↑𝑟𝑦)) → (𝜑 → (𝐴↑𝑟(𝑦 + 1)) ⊆ (𝐵↑𝑟(𝑦 + 1))))) |
| 39 | 7, 11, 15, 19, 25, 38 | nnind 12284 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝜑 → (𝐴↑𝑟𝑁) ⊆ (𝐵↑𝑟𝑁))) |
| 40 | | simpr 484 |
. . . . . 6
⊢ ((𝑁 = 0 ∧ 𝜑) → 𝜑) |
| 41 | | dmss 5913 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| 42 | | rnss 5950 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
| 43 | 41, 42 | jca 511 |
. . . . . . 7
⊢ (𝐴 ⊆ 𝐵 → (dom 𝐴 ⊆ dom 𝐵 ∧ ran 𝐴 ⊆ ran 𝐵)) |
| 44 | | unss12 4188 |
. . . . . . 7
⊢ ((dom
𝐴 ⊆ dom 𝐵 ∧ ran 𝐴 ⊆ ran 𝐵) → (dom 𝐴 ∪ ran 𝐴) ⊆ (dom 𝐵 ∪ ran 𝐵)) |
| 45 | 20, 43, 44 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (dom 𝐴 ∪ ran 𝐴) ⊆ (dom 𝐵 ∪ ran 𝐵)) |
| 46 | | ssres2 6022 |
. . . . . 6
⊢ ((dom
𝐴 ∪ ran 𝐴) ⊆ (dom 𝐵 ∪ ran 𝐵) → ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ ( I ↾ (dom 𝐵 ∪ ran 𝐵))) |
| 47 | 40, 45, 46 | 3syl 18 |
. . . . 5
⊢ ((𝑁 = 0 ∧ 𝜑) → ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ ( I ↾ (dom 𝐵 ∪ ran 𝐵))) |
| 48 | | simpl 482 |
. . . . . . 7
⊢ ((𝑁 = 0 ∧ 𝜑) → 𝑁 = 0) |
| 49 | 48 | oveq2d 7447 |
. . . . . 6
⊢ ((𝑁 = 0 ∧ 𝜑) → (𝐴↑𝑟𝑁) = (𝐴↑𝑟0)) |
| 50 | | relexp0g 15061 |
. . . . . . 7
⊢ (𝐴 ∈ V → (𝐴↑𝑟0) = (
I ↾ (dom 𝐴 ∪ ran
𝐴))) |
| 51 | 40, 22, 50 | 3syl 18 |
. . . . . 6
⊢ ((𝑁 = 0 ∧ 𝜑) → (𝐴↑𝑟0) = ( I ↾
(dom 𝐴 ∪ ran 𝐴))) |
| 52 | 49, 51 | eqtrd 2777 |
. . . . 5
⊢ ((𝑁 = 0 ∧ 𝜑) → (𝐴↑𝑟𝑁) = ( I ↾ (dom 𝐴 ∪ ran 𝐴))) |
| 53 | 48 | oveq2d 7447 |
. . . . . 6
⊢ ((𝑁 = 0 ∧ 𝜑) → (𝐵↑𝑟𝑁) = (𝐵↑𝑟0)) |
| 54 | | relexp0g 15061 |
. . . . . . 7
⊢ (𝐵 ∈ V → (𝐵↑𝑟0) = (
I ↾ (dom 𝐵 ∪ ran
𝐵))) |
| 55 | 40, 21, 54 | 3syl 18 |
. . . . . 6
⊢ ((𝑁 = 0 ∧ 𝜑) → (𝐵↑𝑟0) = ( I ↾
(dom 𝐵 ∪ ran 𝐵))) |
| 56 | 53, 55 | eqtrd 2777 |
. . . . 5
⊢ ((𝑁 = 0 ∧ 𝜑) → (𝐵↑𝑟𝑁) = ( I ↾ (dom 𝐵 ∪ ran 𝐵))) |
| 57 | 47, 52, 56 | 3sstr4d 4039 |
. . . 4
⊢ ((𝑁 = 0 ∧ 𝜑) → (𝐴↑𝑟𝑁) ⊆ (𝐵↑𝑟𝑁)) |
| 58 | 57 | ex 412 |
. . 3
⊢ (𝑁 = 0 → (𝜑 → (𝐴↑𝑟𝑁) ⊆ (𝐵↑𝑟𝑁))) |
| 59 | 39, 58 | jaoi 858 |
. 2
⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝜑 → (𝐴↑𝑟𝑁) ⊆ (𝐵↑𝑟𝑁))) |
| 60 | 3, 59 | mpcom 38 |
1
⊢ (𝜑 → (𝐴↑𝑟𝑁) ⊆ (𝐵↑𝑟𝑁)) |