Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpss1d Structured version   Visualization version   GIF version

Theorem relexpss1d 42759
Description: The relational power of a subset is a subset. (Contributed by RP, 17-Jun-2020.)
Hypotheses
Ref Expression
relexpss1d.a (𝜑𝐴𝐵)
relexpss1d.b (𝜑𝐵 ∈ V)
relexpss1d.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
relexpss1d (𝜑 → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁))

Proof of Theorem relexpss1d
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relexpss1d.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 elnn0 12479 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
31, 2sylib 217 . 2 (𝜑 → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4 oveq2 7420 . . . . . 6 (𝑥 = 1 → (𝐴𝑟𝑥) = (𝐴𝑟1))
5 oveq2 7420 . . . . . 6 (𝑥 = 1 → (𝐵𝑟𝑥) = (𝐵𝑟1))
64, 5sseq12d 4015 . . . . 5 (𝑥 = 1 → ((𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥) ↔ (𝐴𝑟1) ⊆ (𝐵𝑟1)))
76imbi2d 340 . . . 4 (𝑥 = 1 → ((𝜑 → (𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥)) ↔ (𝜑 → (𝐴𝑟1) ⊆ (𝐵𝑟1))))
8 oveq2 7420 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑟𝑥) = (𝐴𝑟𝑦))
9 oveq2 7420 . . . . . 6 (𝑥 = 𝑦 → (𝐵𝑟𝑥) = (𝐵𝑟𝑦))
108, 9sseq12d 4015 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥) ↔ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)))
1110imbi2d 340 . . . 4 (𝑥 = 𝑦 → ((𝜑 → (𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥)) ↔ (𝜑 → (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦))))
12 oveq2 7420 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝐴𝑟𝑥) = (𝐴𝑟(𝑦 + 1)))
13 oveq2 7420 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝐵𝑟𝑥) = (𝐵𝑟(𝑦 + 1)))
1412, 13sseq12d 4015 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥) ↔ (𝐴𝑟(𝑦 + 1)) ⊆ (𝐵𝑟(𝑦 + 1))))
1514imbi2d 340 . . . 4 (𝑥 = (𝑦 + 1) → ((𝜑 → (𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥)) ↔ (𝜑 → (𝐴𝑟(𝑦 + 1)) ⊆ (𝐵𝑟(𝑦 + 1)))))
16 oveq2 7420 . . . . . 6 (𝑥 = 𝑁 → (𝐴𝑟𝑥) = (𝐴𝑟𝑁))
17 oveq2 7420 . . . . . 6 (𝑥 = 𝑁 → (𝐵𝑟𝑥) = (𝐵𝑟𝑁))
1816, 17sseq12d 4015 . . . . 5 (𝑥 = 𝑁 → ((𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥) ↔ (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁)))
1918imbi2d 340 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥)) ↔ (𝜑 → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁))))
20 relexpss1d.a . . . . 5 (𝜑𝐴𝐵)
21 relexpss1d.b . . . . . . 7 (𝜑𝐵 ∈ V)
2221, 20ssexd 5324 . . . . . 6 (𝜑𝐴 ∈ V)
2322relexp1d 14981 . . . . 5 (𝜑 → (𝐴𝑟1) = 𝐴)
2421relexp1d 14981 . . . . 5 (𝜑 → (𝐵𝑟1) = 𝐵)
2520, 23, 243sstr4d 4029 . . . 4 (𝜑 → (𝐴𝑟1) ⊆ (𝐵𝑟1))
26 simp3 1137 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦))
27203ad2ant2 1133 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → 𝐴𝐵)
2826, 27coss12d 14924 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → ((𝐴𝑟𝑦) ∘ 𝐴) ⊆ ((𝐵𝑟𝑦) ∘ 𝐵))
29223ad2ant2 1133 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → 𝐴 ∈ V)
30 simp1 1135 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → 𝑦 ∈ ℕ)
31 relexpsucnnr 14977 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑦 ∈ ℕ) → (𝐴𝑟(𝑦 + 1)) = ((𝐴𝑟𝑦) ∘ 𝐴))
3229, 30, 31syl2anc 583 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → (𝐴𝑟(𝑦 + 1)) = ((𝐴𝑟𝑦) ∘ 𝐴))
33213ad2ant2 1133 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → 𝐵 ∈ V)
34 relexpsucnnr 14977 . . . . . . . 8 ((𝐵 ∈ V ∧ 𝑦 ∈ ℕ) → (𝐵𝑟(𝑦 + 1)) = ((𝐵𝑟𝑦) ∘ 𝐵))
3533, 30, 34syl2anc 583 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → (𝐵𝑟(𝑦 + 1)) = ((𝐵𝑟𝑦) ∘ 𝐵))
3628, 32, 353sstr4d 4029 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → (𝐴𝑟(𝑦 + 1)) ⊆ (𝐵𝑟(𝑦 + 1)))
37363exp 1118 . . . . 5 (𝑦 ∈ ℕ → (𝜑 → ((𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦) → (𝐴𝑟(𝑦 + 1)) ⊆ (𝐵𝑟(𝑦 + 1)))))
3837a2d 29 . . . 4 (𝑦 ∈ ℕ → ((𝜑 → (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → (𝜑 → (𝐴𝑟(𝑦 + 1)) ⊆ (𝐵𝑟(𝑦 + 1)))))
397, 11, 15, 19, 25, 38nnind 12235 . . 3 (𝑁 ∈ ℕ → (𝜑 → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁)))
40 simpr 484 . . . . . 6 ((𝑁 = 0 ∧ 𝜑) → 𝜑)
41 dmss 5902 . . . . . . . 8 (𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)
42 rnss 5938 . . . . . . . 8 (𝐴𝐵 → ran 𝐴 ⊆ ran 𝐵)
4341, 42jca 511 . . . . . . 7 (𝐴𝐵 → (dom 𝐴 ⊆ dom 𝐵 ∧ ran 𝐴 ⊆ ran 𝐵))
44 unss12 4182 . . . . . . 7 ((dom 𝐴 ⊆ dom 𝐵 ∧ ran 𝐴 ⊆ ran 𝐵) → (dom 𝐴 ∪ ran 𝐴) ⊆ (dom 𝐵 ∪ ran 𝐵))
4520, 43, 443syl 18 . . . . . 6 (𝜑 → (dom 𝐴 ∪ ran 𝐴) ⊆ (dom 𝐵 ∪ ran 𝐵))
46 ssres2 6009 . . . . . 6 ((dom 𝐴 ∪ ran 𝐴) ⊆ (dom 𝐵 ∪ ran 𝐵) → ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
4740, 45, 463syl 18 . . . . 5 ((𝑁 = 0 ∧ 𝜑) → ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
48 simpl 482 . . . . . . 7 ((𝑁 = 0 ∧ 𝜑) → 𝑁 = 0)
4948oveq2d 7428 . . . . . 6 ((𝑁 = 0 ∧ 𝜑) → (𝐴𝑟𝑁) = (𝐴𝑟0))
50 relexp0g 14974 . . . . . . 7 (𝐴 ∈ V → (𝐴𝑟0) = ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
5140, 22, 503syl 18 . . . . . 6 ((𝑁 = 0 ∧ 𝜑) → (𝐴𝑟0) = ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
5249, 51eqtrd 2771 . . . . 5 ((𝑁 = 0 ∧ 𝜑) → (𝐴𝑟𝑁) = ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
5348oveq2d 7428 . . . . . 6 ((𝑁 = 0 ∧ 𝜑) → (𝐵𝑟𝑁) = (𝐵𝑟0))
54 relexp0g 14974 . . . . . . 7 (𝐵 ∈ V → (𝐵𝑟0) = ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
5540, 21, 543syl 18 . . . . . 6 ((𝑁 = 0 ∧ 𝜑) → (𝐵𝑟0) = ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
5653, 55eqtrd 2771 . . . . 5 ((𝑁 = 0 ∧ 𝜑) → (𝐵𝑟𝑁) = ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
5747, 52, 563sstr4d 4029 . . . 4 ((𝑁 = 0 ∧ 𝜑) → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁))
5857ex 412 . . 3 (𝑁 = 0 → (𝜑 → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁)))
5939, 58jaoi 854 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝜑 → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁)))
603, 59mpcom 38 1 (𝜑 → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844  w3a 1086   = wceq 1540  wcel 2105  Vcvv 3473  cun 3946  wss 3948   I cid 5573  dom cdm 5676  ran crn 5677  cres 5678  ccom 5680  (class class class)co 7412  0cc0 11114  1c1 11115   + caddc 11117  cn 12217  0cn0 12477  𝑟crelexp 14971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-seq 13972  df-relexp 14972
This theorem is referenced by:  corcltrcl  42793  cotrclrcl  42796
  Copyright terms: Public domain W3C validator