MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofs2 Structured version   Visualization version   GIF version

Theorem ofs2 14050
Description: Letterwise operations on a double letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
Assertion
Ref Expression
ofs2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴𝐵”⟩ ∘𝑓 𝑅⟨“𝐶𝐷”⟩) = ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩)

Proof of Theorem ofs2
StepHypRef Expression
1 df-s2 13930 . . . 4 ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
2 df-s2 13930 . . . 4 ⟨“𝐶𝐷”⟩ = (⟨“𝐶”⟩ ++ ⟨“𝐷”⟩)
31, 2oveq12i 6889 . . 3 (⟨“𝐴𝐵”⟩ ∘𝑓 𝑅⟨“𝐶𝐷”⟩) = ((⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) ∘𝑓 𝑅(⟨“𝐶”⟩ ++ ⟨“𝐷”⟩))
4 simpll 784 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐴𝑆)
54s1cld 13620 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐴”⟩ ∈ Word 𝑆)
6 simplr 786 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐵𝑆)
76s1cld 13620 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐵”⟩ ∈ Word 𝑆)
8 simprl 788 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐶𝑇)
98s1cld 13620 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐶”⟩ ∈ Word 𝑇)
10 simprr 790 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐷𝑇)
1110s1cld 13620 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐷”⟩ ∈ Word 𝑇)
12 s1len 13623 . . . . . 6 (♯‘⟨“𝐴”⟩) = 1
13 s1len 13623 . . . . . 6 (♯‘⟨“𝐶”⟩) = 1
1412, 13eqtr4i 2823 . . . . 5 (♯‘⟨“𝐴”⟩) = (♯‘⟨“𝐶”⟩)
1514a1i 11 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (♯‘⟨“𝐴”⟩) = (♯‘⟨“𝐶”⟩))
16 s1len 13623 . . . . . 6 (♯‘⟨“𝐵”⟩) = 1
17 s1len 13623 . . . . . 6 (♯‘⟨“𝐷”⟩) = 1
1816, 17eqtr4i 2823 . . . . 5 (♯‘⟨“𝐵”⟩) = (♯‘⟨“𝐷”⟩)
1918a1i 11 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (♯‘⟨“𝐵”⟩) = (♯‘⟨“𝐷”⟩))
205, 7, 9, 11, 15, 19ofccat 14048 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ((⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) ∘𝑓 𝑅(⟨“𝐶”⟩ ++ ⟨“𝐷”⟩)) = ((⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘𝑓 𝑅⟨“𝐷”⟩)))
213, 20syl5eq 2844 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴𝐵”⟩ ∘𝑓 𝑅⟨“𝐶𝐷”⟩) = ((⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘𝑓 𝑅⟨“𝐷”⟩)))
22 ofs1 14049 . . . . 5 ((𝐴𝑆𝐶𝑇) → (⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐶”⟩) = ⟨“(𝐴𝑅𝐶)”⟩)
234, 8, 22syl2anc 580 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐶”⟩) = ⟨“(𝐴𝑅𝐶)”⟩)
24 ofs1 14049 . . . . 5 ((𝐵𝑆𝐷𝑇) → (⟨“𝐵”⟩ ∘𝑓 𝑅⟨“𝐷”⟩) = ⟨“(𝐵𝑅𝐷)”⟩)
256, 10, 24syl2anc 580 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐵”⟩ ∘𝑓 𝑅⟨“𝐷”⟩) = ⟨“(𝐵𝑅𝐷)”⟩)
2623, 25oveq12d 6895 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ((⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘𝑓 𝑅⟨“𝐷”⟩)) = (⟨“(𝐴𝑅𝐶)”⟩ ++ ⟨“(𝐵𝑅𝐷)”⟩))
27 df-s2 13930 . . 3 ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩ = (⟨“(𝐴𝑅𝐶)”⟩ ++ ⟨“(𝐵𝑅𝐷)”⟩)
2826, 27syl6eqr 2850 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ((⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘𝑓 𝑅⟨“𝐷”⟩)) = ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩)
2921, 28eqtrd 2832 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴𝐵”⟩ ∘𝑓 𝑅⟨“𝐶𝐷”⟩) = ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  cfv 6100  (class class class)co 6877  𝑓 cof 7128  1c1 10224  chash 13367   ++ cconcat 13587  ⟨“cs1 13612  ⟨“cs2 13923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-rep 4963  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182  ax-cnex 10279  ax-resscn 10280  ax-1cn 10281  ax-icn 10282  ax-addcl 10283  ax-addrcl 10284  ax-mulcl 10285  ax-mulrcl 10286  ax-mulcom 10287  ax-addass 10288  ax-mulass 10289  ax-distr 10290  ax-i2m1 10291  ax-1ne0 10292  ax-1rid 10293  ax-rnegex 10294  ax-rrecex 10295  ax-cnre 10296  ax-pre-lttri 10297  ax-pre-lttrn 10298  ax-pre-ltadd 10299  ax-pre-mulgt0 10300
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-pss 3784  df-nul 4115  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4628  df-int 4667  df-iun 4711  df-br 4843  df-opab 4905  df-mpt 4922  df-tr 4945  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5897  df-ord 5943  df-on 5944  df-lim 5945  df-suc 5946  df-iota 6063  df-fun 6102  df-fn 6103  df-f 6104  df-f1 6105  df-fo 6106  df-f1o 6107  df-fv 6108  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-of 7130  df-om 7299  df-1st 7400  df-2nd 7401  df-wrecs 7644  df-recs 7706  df-rdg 7744  df-1o 7798  df-oadd 7802  df-er 7981  df-en 8195  df-dom 8196  df-sdom 8197  df-fin 8198  df-card 9050  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10557  df-neg 10558  df-nn 11312  df-n0 11578  df-z 11664  df-uz 11928  df-fz 12578  df-fzo 12718  df-hash 13368  df-word 13532  df-concat 13588  df-s1 13613  df-s2 13930
This theorem is referenced by:  amgmw2d  43341
  Copyright terms: Public domain W3C validator