| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofs2 | Structured version Visualization version GIF version | ||
| Description: Letterwise operations on a double letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| ofs2 | ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (〈“𝐴𝐵”〉 ∘f 𝑅〈“𝐶𝐷”〉) = 〈“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s2 14821 | . . . 4 ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | |
| 2 | df-s2 14821 | . . . 4 ⊢ 〈“𝐶𝐷”〉 = (〈“𝐶”〉 ++ 〈“𝐷”〉) | |
| 3 | 1, 2 | oveq12i 7402 | . . 3 ⊢ (〈“𝐴𝐵”〉 ∘f 𝑅〈“𝐶𝐷”〉) = ((〈“𝐴”〉 ++ 〈“𝐵”〉) ∘f 𝑅(〈“𝐶”〉 ++ 〈“𝐷”〉)) |
| 4 | simpll 766 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 𝐴 ∈ 𝑆) | |
| 5 | 4 | s1cld 14575 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 〈“𝐴”〉 ∈ Word 𝑆) |
| 6 | simplr 768 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 𝐵 ∈ 𝑆) | |
| 7 | 6 | s1cld 14575 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 〈“𝐵”〉 ∈ Word 𝑆) |
| 8 | simprl 770 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 𝐶 ∈ 𝑇) | |
| 9 | 8 | s1cld 14575 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 〈“𝐶”〉 ∈ Word 𝑇) |
| 10 | simprr 772 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 𝐷 ∈ 𝑇) | |
| 11 | 10 | s1cld 14575 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 〈“𝐷”〉 ∈ Word 𝑇) |
| 12 | s1len 14578 | . . . . . 6 ⊢ (♯‘〈“𝐴”〉) = 1 | |
| 13 | s1len 14578 | . . . . . 6 ⊢ (♯‘〈“𝐶”〉) = 1 | |
| 14 | 12, 13 | eqtr4i 2756 | . . . . 5 ⊢ (♯‘〈“𝐴”〉) = (♯‘〈“𝐶”〉) |
| 15 | 14 | a1i 11 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (♯‘〈“𝐴”〉) = (♯‘〈“𝐶”〉)) |
| 16 | s1len 14578 | . . . . . 6 ⊢ (♯‘〈“𝐵”〉) = 1 | |
| 17 | s1len 14578 | . . . . . 6 ⊢ (♯‘〈“𝐷”〉) = 1 | |
| 18 | 16, 17 | eqtr4i 2756 | . . . . 5 ⊢ (♯‘〈“𝐵”〉) = (♯‘〈“𝐷”〉) |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (♯‘〈“𝐵”〉) = (♯‘〈“𝐷”〉)) |
| 20 | 5, 7, 9, 11, 15, 19 | ofccat 14942 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → ((〈“𝐴”〉 ++ 〈“𝐵”〉) ∘f 𝑅(〈“𝐶”〉 ++ 〈“𝐷”〉)) = ((〈“𝐴”〉 ∘f 𝑅〈“𝐶”〉) ++ (〈“𝐵”〉 ∘f 𝑅〈“𝐷”〉))) |
| 21 | 3, 20 | eqtrid 2777 | . 2 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (〈“𝐴𝐵”〉 ∘f 𝑅〈“𝐶𝐷”〉) = ((〈“𝐴”〉 ∘f 𝑅〈“𝐶”〉) ++ (〈“𝐵”〉 ∘f 𝑅〈“𝐷”〉))) |
| 22 | ofs1 14943 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → (〈“𝐴”〉 ∘f 𝑅〈“𝐶”〉) = 〈“(𝐴𝑅𝐶)”〉) | |
| 23 | 4, 8, 22 | syl2anc 584 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (〈“𝐴”〉 ∘f 𝑅〈“𝐶”〉) = 〈“(𝐴𝑅𝐶)”〉) |
| 24 | ofs1 14943 | . . . . 5 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇) → (〈“𝐵”〉 ∘f 𝑅〈“𝐷”〉) = 〈“(𝐵𝑅𝐷)”〉) | |
| 25 | 6, 10, 24 | syl2anc 584 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (〈“𝐵”〉 ∘f 𝑅〈“𝐷”〉) = 〈“(𝐵𝑅𝐷)”〉) |
| 26 | 23, 25 | oveq12d 7408 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → ((〈“𝐴”〉 ∘f 𝑅〈“𝐶”〉) ++ (〈“𝐵”〉 ∘f 𝑅〈“𝐷”〉)) = (〈“(𝐴𝑅𝐶)”〉 ++ 〈“(𝐵𝑅𝐷)”〉)) |
| 27 | df-s2 14821 | . . 3 ⊢ 〈“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”〉 = (〈“(𝐴𝑅𝐶)”〉 ++ 〈“(𝐵𝑅𝐷)”〉) | |
| 28 | 26, 27 | eqtr4di 2783 | . 2 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → ((〈“𝐴”〉 ∘f 𝑅〈“𝐶”〉) ++ (〈“𝐵”〉 ∘f 𝑅〈“𝐷”〉)) = 〈“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”〉) |
| 29 | 21, 28 | eqtrd 2765 | 1 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (〈“𝐴𝐵”〉 ∘f 𝑅〈“𝐶𝐷”〉) = 〈“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 ∘f cof 7654 1c1 11076 ♯chash 14302 ++ cconcat 14542 〈“cs1 14567 〈“cs2 14814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-concat 14543 df-s1 14568 df-s2 14821 |
| This theorem is referenced by: amgmw2d 49797 |
| Copyright terms: Public domain | W3C validator |