MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofs2 Structured version   Visualization version   GIF version

Theorem ofs2 14310
Description: Letterwise operations on a double letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
Assertion
Ref Expression
ofs2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴𝐵”⟩ ∘f 𝑅⟨“𝐶𝐷”⟩) = ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩)

Proof of Theorem ofs2
StepHypRef Expression
1 df-s2 14189 . . . 4 ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
2 df-s2 14189 . . . 4 ⟨“𝐶𝐷”⟩ = (⟨“𝐶”⟩ ++ ⟨“𝐷”⟩)
31, 2oveq12i 7142 . . 3 (⟨“𝐴𝐵”⟩ ∘f 𝑅⟨“𝐶𝐷”⟩) = ((⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) ∘f 𝑅(⟨“𝐶”⟩ ++ ⟨“𝐷”⟩))
4 simpll 766 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐴𝑆)
54s1cld 13936 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐴”⟩ ∈ Word 𝑆)
6 simplr 768 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐵𝑆)
76s1cld 13936 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐵”⟩ ∈ Word 𝑆)
8 simprl 770 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐶𝑇)
98s1cld 13936 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐶”⟩ ∈ Word 𝑇)
10 simprr 772 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐷𝑇)
1110s1cld 13936 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐷”⟩ ∈ Word 𝑇)
12 s1len 13939 . . . . . 6 (♯‘⟨“𝐴”⟩) = 1
13 s1len 13939 . . . . . 6 (♯‘⟨“𝐶”⟩) = 1
1412, 13eqtr4i 2847 . . . . 5 (♯‘⟨“𝐴”⟩) = (♯‘⟨“𝐶”⟩)
1514a1i 11 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (♯‘⟨“𝐴”⟩) = (♯‘⟨“𝐶”⟩))
16 s1len 13939 . . . . . 6 (♯‘⟨“𝐵”⟩) = 1
17 s1len 13939 . . . . . 6 (♯‘⟨“𝐷”⟩) = 1
1816, 17eqtr4i 2847 . . . . 5 (♯‘⟨“𝐵”⟩) = (♯‘⟨“𝐷”⟩)
1918a1i 11 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (♯‘⟨“𝐵”⟩) = (♯‘⟨“𝐷”⟩))
205, 7, 9, 11, 15, 19ofccat 14308 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ((⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) ∘f 𝑅(⟨“𝐶”⟩ ++ ⟨“𝐷”⟩)) = ((⟨“𝐴”⟩ ∘f 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘f 𝑅⟨“𝐷”⟩)))
213, 20syl5eq 2868 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴𝐵”⟩ ∘f 𝑅⟨“𝐶𝐷”⟩) = ((⟨“𝐴”⟩ ∘f 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘f 𝑅⟨“𝐷”⟩)))
22 ofs1 14309 . . . . 5 ((𝐴𝑆𝐶𝑇) → (⟨“𝐴”⟩ ∘f 𝑅⟨“𝐶”⟩) = ⟨“(𝐴𝑅𝐶)”⟩)
234, 8, 22syl2anc 587 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴”⟩ ∘f 𝑅⟨“𝐶”⟩) = ⟨“(𝐴𝑅𝐶)”⟩)
24 ofs1 14309 . . . . 5 ((𝐵𝑆𝐷𝑇) → (⟨“𝐵”⟩ ∘f 𝑅⟨“𝐷”⟩) = ⟨“(𝐵𝑅𝐷)”⟩)
256, 10, 24syl2anc 587 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐵”⟩ ∘f 𝑅⟨“𝐷”⟩) = ⟨“(𝐵𝑅𝐷)”⟩)
2623, 25oveq12d 7148 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ((⟨“𝐴”⟩ ∘f 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘f 𝑅⟨“𝐷”⟩)) = (⟨“(𝐴𝑅𝐶)”⟩ ++ ⟨“(𝐵𝑅𝐷)”⟩))
27 df-s2 14189 . . 3 ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩ = (⟨“(𝐴𝑅𝐶)”⟩ ++ ⟨“(𝐵𝑅𝐷)”⟩)
2826, 27syl6eqr 2874 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ((⟨“𝐴”⟩ ∘f 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘f 𝑅⟨“𝐷”⟩)) = ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩)
2921, 28eqtrd 2856 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴𝐵”⟩ ∘f 𝑅⟨“𝐶𝐷”⟩) = ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  cfv 6328  (class class class)co 7130  f cof 7382  1c1 10515  chash 13674   ++ cconcat 13901  ⟨“cs1 13928  ⟨“cs2 14182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-n0 11876  df-z 11960  df-uz 12222  df-fz 12876  df-fzo 13017  df-hash 13675  df-word 13846  df-concat 13902  df-s1 13929  df-s2 14189
This theorem is referenced by:  amgmw2d  45139
  Copyright terms: Public domain W3C validator