MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofs2 Structured version   Visualization version   GIF version

Theorem ofs2 13920
Description: Letterwise operations on a double letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
Assertion
Ref Expression
ofs2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴𝐵”⟩ ∘𝑓 𝑅⟨“𝐶𝐷”⟩) = ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩)

Proof of Theorem ofs2
StepHypRef Expression
1 df-s2 13802 . . . 4 ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
2 df-s2 13802 . . . 4 ⟨“𝐶𝐷”⟩ = (⟨“𝐶”⟩ ++ ⟨“𝐷”⟩)
31, 2oveq12i 6808 . . 3 (⟨“𝐴𝐵”⟩ ∘𝑓 𝑅⟨“𝐶𝐷”⟩) = ((⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) ∘𝑓 𝑅(⟨“𝐶”⟩ ++ ⟨“𝐷”⟩))
4 simpll 750 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐴𝑆)
54s1cld 13583 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐴”⟩ ∈ Word 𝑆)
6 simplr 752 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐵𝑆)
76s1cld 13583 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐵”⟩ ∈ Word 𝑆)
8 simprl 754 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐶𝑇)
98s1cld 13583 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐶”⟩ ∈ Word 𝑇)
10 simprr 756 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐷𝑇)
1110s1cld 13583 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐷”⟩ ∈ Word 𝑇)
12 s1len 13586 . . . . . 6 (♯‘⟨“𝐴”⟩) = 1
13 s1len 13586 . . . . . 6 (♯‘⟨“𝐶”⟩) = 1
1412, 13eqtr4i 2796 . . . . 5 (♯‘⟨“𝐴”⟩) = (♯‘⟨“𝐶”⟩)
1514a1i 11 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (♯‘⟨“𝐴”⟩) = (♯‘⟨“𝐶”⟩))
16 s1len 13586 . . . . . 6 (♯‘⟨“𝐵”⟩) = 1
17 s1len 13586 . . . . . 6 (♯‘⟨“𝐷”⟩) = 1
1816, 17eqtr4i 2796 . . . . 5 (♯‘⟨“𝐵”⟩) = (♯‘⟨“𝐷”⟩)
1918a1i 11 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (♯‘⟨“𝐵”⟩) = (♯‘⟨“𝐷”⟩))
205, 7, 9, 11, 15, 19ofccat 13918 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ((⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) ∘𝑓 𝑅(⟨“𝐶”⟩ ++ ⟨“𝐷”⟩)) = ((⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘𝑓 𝑅⟨“𝐷”⟩)))
213, 20syl5eq 2817 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴𝐵”⟩ ∘𝑓 𝑅⟨“𝐶𝐷”⟩) = ((⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘𝑓 𝑅⟨“𝐷”⟩)))
22 ofs1 13919 . . . . 5 ((𝐴𝑆𝐶𝑇) → (⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐶”⟩) = ⟨“(𝐴𝑅𝐶)”⟩)
234, 8, 22syl2anc 573 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐶”⟩) = ⟨“(𝐴𝑅𝐶)”⟩)
24 ofs1 13919 . . . . 5 ((𝐵𝑆𝐷𝑇) → (⟨“𝐵”⟩ ∘𝑓 𝑅⟨“𝐷”⟩) = ⟨“(𝐵𝑅𝐷)”⟩)
256, 10, 24syl2anc 573 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐵”⟩ ∘𝑓 𝑅⟨“𝐷”⟩) = ⟨“(𝐵𝑅𝐷)”⟩)
2623, 25oveq12d 6814 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ((⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘𝑓 𝑅⟨“𝐷”⟩)) = (⟨“(𝐴𝑅𝐶)”⟩ ++ ⟨“(𝐵𝑅𝐷)”⟩))
27 df-s2 13802 . . 3 ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩ = (⟨“(𝐴𝑅𝐶)”⟩ ++ ⟨“(𝐵𝑅𝐷)”⟩)
2826, 27syl6eqr 2823 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ((⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘𝑓 𝑅⟨“𝐷”⟩)) = ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩)
2921, 28eqtrd 2805 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴𝐵”⟩ ∘𝑓 𝑅⟨“𝐶𝐷”⟩) = ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  cfv 6030  (class class class)co 6796  𝑓 cof 7046  1c1 10143  chash 13321   ++ cconcat 13489  ⟨“cs1 13490  ⟨“cs2 13795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495  df-concat 13497  df-s1 13498  df-s2 13802
This theorem is referenced by:  amgmw2d  43076
  Copyright terms: Public domain W3C validator