Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ofs2 | Structured version Visualization version GIF version |
Description: Letterwise operations on a double letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.) |
Ref | Expression |
---|---|
ofs2 | ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (〈“𝐴𝐵”〉 ∘f 𝑅〈“𝐶𝐷”〉) = 〈“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s2 14446 | . . . 4 ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | |
2 | df-s2 14446 | . . . 4 ⊢ 〈“𝐶𝐷”〉 = (〈“𝐶”〉 ++ 〈“𝐷”〉) | |
3 | 1, 2 | oveq12i 7247 | . . 3 ⊢ (〈“𝐴𝐵”〉 ∘f 𝑅〈“𝐶𝐷”〉) = ((〈“𝐴”〉 ++ 〈“𝐵”〉) ∘f 𝑅(〈“𝐶”〉 ++ 〈“𝐷”〉)) |
4 | simpll 767 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 𝐴 ∈ 𝑆) | |
5 | 4 | s1cld 14193 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 〈“𝐴”〉 ∈ Word 𝑆) |
6 | simplr 769 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 𝐵 ∈ 𝑆) | |
7 | 6 | s1cld 14193 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 〈“𝐵”〉 ∈ Word 𝑆) |
8 | simprl 771 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 𝐶 ∈ 𝑇) | |
9 | 8 | s1cld 14193 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 〈“𝐶”〉 ∈ Word 𝑇) |
10 | simprr 773 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 𝐷 ∈ 𝑇) | |
11 | 10 | s1cld 14193 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 〈“𝐷”〉 ∈ Word 𝑇) |
12 | s1len 14196 | . . . . . 6 ⊢ (♯‘〈“𝐴”〉) = 1 | |
13 | s1len 14196 | . . . . . 6 ⊢ (♯‘〈“𝐶”〉) = 1 | |
14 | 12, 13 | eqtr4i 2770 | . . . . 5 ⊢ (♯‘〈“𝐴”〉) = (♯‘〈“𝐶”〉) |
15 | 14 | a1i 11 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (♯‘〈“𝐴”〉) = (♯‘〈“𝐶”〉)) |
16 | s1len 14196 | . . . . . 6 ⊢ (♯‘〈“𝐵”〉) = 1 | |
17 | s1len 14196 | . . . . . 6 ⊢ (♯‘〈“𝐷”〉) = 1 | |
18 | 16, 17 | eqtr4i 2770 | . . . . 5 ⊢ (♯‘〈“𝐵”〉) = (♯‘〈“𝐷”〉) |
19 | 18 | a1i 11 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (♯‘〈“𝐵”〉) = (♯‘〈“𝐷”〉)) |
20 | 5, 7, 9, 11, 15, 19 | ofccat 14565 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → ((〈“𝐴”〉 ++ 〈“𝐵”〉) ∘f 𝑅(〈“𝐶”〉 ++ 〈“𝐷”〉)) = ((〈“𝐴”〉 ∘f 𝑅〈“𝐶”〉) ++ (〈“𝐵”〉 ∘f 𝑅〈“𝐷”〉))) |
21 | 3, 20 | eqtrid 2791 | . 2 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (〈“𝐴𝐵”〉 ∘f 𝑅〈“𝐶𝐷”〉) = ((〈“𝐴”〉 ∘f 𝑅〈“𝐶”〉) ++ (〈“𝐵”〉 ∘f 𝑅〈“𝐷”〉))) |
22 | ofs1 14566 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → (〈“𝐴”〉 ∘f 𝑅〈“𝐶”〉) = 〈“(𝐴𝑅𝐶)”〉) | |
23 | 4, 8, 22 | syl2anc 587 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (〈“𝐴”〉 ∘f 𝑅〈“𝐶”〉) = 〈“(𝐴𝑅𝐶)”〉) |
24 | ofs1 14566 | . . . . 5 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇) → (〈“𝐵”〉 ∘f 𝑅〈“𝐷”〉) = 〈“(𝐵𝑅𝐷)”〉) | |
25 | 6, 10, 24 | syl2anc 587 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (〈“𝐵”〉 ∘f 𝑅〈“𝐷”〉) = 〈“(𝐵𝑅𝐷)”〉) |
26 | 23, 25 | oveq12d 7253 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → ((〈“𝐴”〉 ∘f 𝑅〈“𝐶”〉) ++ (〈“𝐵”〉 ∘f 𝑅〈“𝐷”〉)) = (〈“(𝐴𝑅𝐶)”〉 ++ 〈“(𝐵𝑅𝐷)”〉)) |
27 | df-s2 14446 | . . 3 ⊢ 〈“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”〉 = (〈“(𝐴𝑅𝐶)”〉 ++ 〈“(𝐵𝑅𝐷)”〉) | |
28 | 26, 27 | eqtr4di 2798 | . 2 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → ((〈“𝐴”〉 ∘f 𝑅〈“𝐶”〉) ++ (〈“𝐵”〉 ∘f 𝑅〈“𝐷”〉)) = 〈“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”〉) |
29 | 21, 28 | eqtrd 2779 | 1 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (〈“𝐴𝐵”〉 ∘f 𝑅〈“𝐶𝐷”〉) = 〈“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ‘cfv 6401 (class class class)co 7235 ∘f cof 7489 1c1 10760 ♯chash 13929 ++ cconcat 14158 〈“cs1 14185 〈“cs2 14439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5196 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-cnex 10815 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 ax-pre-mulgt0 10836 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-of 7491 df-om 7667 df-1st 7783 df-2nd 7784 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-1o 8226 df-er 8415 df-en 8651 df-dom 8652 df-sdom 8653 df-fin 8654 df-card 9585 df-pnf 10899 df-mnf 10900 df-xr 10901 df-ltxr 10902 df-le 10903 df-sub 11094 df-neg 11095 df-nn 11861 df-n0 12121 df-z 12207 df-uz 12469 df-fz 13126 df-fzo 13269 df-hash 13930 df-word 14103 df-concat 14159 df-s1 14186 df-s2 14446 |
This theorem is referenced by: amgmw2d 46225 |
Copyright terms: Public domain | W3C validator |