| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofs2 | Structured version Visualization version GIF version | ||
| Description: Letterwise operations on a double letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| ofs2 | ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (〈“𝐴𝐵”〉 ∘f 𝑅〈“𝐶𝐷”〉) = 〈“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s2 14814 | . . . 4 ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | |
| 2 | df-s2 14814 | . . . 4 ⊢ 〈“𝐶𝐷”〉 = (〈“𝐶”〉 ++ 〈“𝐷”〉) | |
| 3 | 1, 2 | oveq12i 7399 | . . 3 ⊢ (〈“𝐴𝐵”〉 ∘f 𝑅〈“𝐶𝐷”〉) = ((〈“𝐴”〉 ++ 〈“𝐵”〉) ∘f 𝑅(〈“𝐶”〉 ++ 〈“𝐷”〉)) |
| 4 | simpll 766 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 𝐴 ∈ 𝑆) | |
| 5 | 4 | s1cld 14568 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 〈“𝐴”〉 ∈ Word 𝑆) |
| 6 | simplr 768 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 𝐵 ∈ 𝑆) | |
| 7 | 6 | s1cld 14568 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 〈“𝐵”〉 ∈ Word 𝑆) |
| 8 | simprl 770 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 𝐶 ∈ 𝑇) | |
| 9 | 8 | s1cld 14568 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 〈“𝐶”〉 ∈ Word 𝑇) |
| 10 | simprr 772 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 𝐷 ∈ 𝑇) | |
| 11 | 10 | s1cld 14568 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → 〈“𝐷”〉 ∈ Word 𝑇) |
| 12 | s1len 14571 | . . . . . 6 ⊢ (♯‘〈“𝐴”〉) = 1 | |
| 13 | s1len 14571 | . . . . . 6 ⊢ (♯‘〈“𝐶”〉) = 1 | |
| 14 | 12, 13 | eqtr4i 2755 | . . . . 5 ⊢ (♯‘〈“𝐴”〉) = (♯‘〈“𝐶”〉) |
| 15 | 14 | a1i 11 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (♯‘〈“𝐴”〉) = (♯‘〈“𝐶”〉)) |
| 16 | s1len 14571 | . . . . . 6 ⊢ (♯‘〈“𝐵”〉) = 1 | |
| 17 | s1len 14571 | . . . . . 6 ⊢ (♯‘〈“𝐷”〉) = 1 | |
| 18 | 16, 17 | eqtr4i 2755 | . . . . 5 ⊢ (♯‘〈“𝐵”〉) = (♯‘〈“𝐷”〉) |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (♯‘〈“𝐵”〉) = (♯‘〈“𝐷”〉)) |
| 20 | 5, 7, 9, 11, 15, 19 | ofccat 14935 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → ((〈“𝐴”〉 ++ 〈“𝐵”〉) ∘f 𝑅(〈“𝐶”〉 ++ 〈“𝐷”〉)) = ((〈“𝐴”〉 ∘f 𝑅〈“𝐶”〉) ++ (〈“𝐵”〉 ∘f 𝑅〈“𝐷”〉))) |
| 21 | 3, 20 | eqtrid 2776 | . 2 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (〈“𝐴𝐵”〉 ∘f 𝑅〈“𝐶𝐷”〉) = ((〈“𝐴”〉 ∘f 𝑅〈“𝐶”〉) ++ (〈“𝐵”〉 ∘f 𝑅〈“𝐷”〉))) |
| 22 | ofs1 14936 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → (〈“𝐴”〉 ∘f 𝑅〈“𝐶”〉) = 〈“(𝐴𝑅𝐶)”〉) | |
| 23 | 4, 8, 22 | syl2anc 584 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (〈“𝐴”〉 ∘f 𝑅〈“𝐶”〉) = 〈“(𝐴𝑅𝐶)”〉) |
| 24 | ofs1 14936 | . . . . 5 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇) → (〈“𝐵”〉 ∘f 𝑅〈“𝐷”〉) = 〈“(𝐵𝑅𝐷)”〉) | |
| 25 | 6, 10, 24 | syl2anc 584 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (〈“𝐵”〉 ∘f 𝑅〈“𝐷”〉) = 〈“(𝐵𝑅𝐷)”〉) |
| 26 | 23, 25 | oveq12d 7405 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → ((〈“𝐴”〉 ∘f 𝑅〈“𝐶”〉) ++ (〈“𝐵”〉 ∘f 𝑅〈“𝐷”〉)) = (〈“(𝐴𝑅𝐶)”〉 ++ 〈“(𝐵𝑅𝐷)”〉)) |
| 27 | df-s2 14814 | . . 3 ⊢ 〈“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”〉 = (〈“(𝐴𝑅𝐶)”〉 ++ 〈“(𝐵𝑅𝐷)”〉) | |
| 28 | 26, 27 | eqtr4di 2782 | . 2 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → ((〈“𝐴”〉 ∘f 𝑅〈“𝐶”〉) ++ (〈“𝐵”〉 ∘f 𝑅〈“𝐷”〉)) = 〈“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”〉) |
| 29 | 21, 28 | eqtrd 2764 | 1 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) → (〈“𝐴𝐵”〉 ∘f 𝑅〈“𝐶𝐷”〉) = 〈“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 1c1 11069 ♯chash 14295 ++ cconcat 14535 〈“cs1 14560 〈“cs2 14807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-s2 14814 |
| This theorem is referenced by: amgmw2d 49793 |
| Copyright terms: Public domain | W3C validator |