MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofs2 Structured version   Visualization version   GIF version

Theorem ofs2 14944
Description: Letterwise operations on a double letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
Assertion
Ref Expression
ofs2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴𝐵”⟩ ∘f 𝑅⟨“𝐶𝐷”⟩) = ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩)

Proof of Theorem ofs2
StepHypRef Expression
1 df-s2 14821 . . . 4 ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
2 df-s2 14821 . . . 4 ⟨“𝐶𝐷”⟩ = (⟨“𝐶”⟩ ++ ⟨“𝐷”⟩)
31, 2oveq12i 7402 . . 3 (⟨“𝐴𝐵”⟩ ∘f 𝑅⟨“𝐶𝐷”⟩) = ((⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) ∘f 𝑅(⟨“𝐶”⟩ ++ ⟨“𝐷”⟩))
4 simpll 766 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐴𝑆)
54s1cld 14575 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐴”⟩ ∈ Word 𝑆)
6 simplr 768 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐵𝑆)
76s1cld 14575 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐵”⟩ ∈ Word 𝑆)
8 simprl 770 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐶𝑇)
98s1cld 14575 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐶”⟩ ∈ Word 𝑇)
10 simprr 772 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐷𝑇)
1110s1cld 14575 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐷”⟩ ∈ Word 𝑇)
12 s1len 14578 . . . . . 6 (♯‘⟨“𝐴”⟩) = 1
13 s1len 14578 . . . . . 6 (♯‘⟨“𝐶”⟩) = 1
1412, 13eqtr4i 2756 . . . . 5 (♯‘⟨“𝐴”⟩) = (♯‘⟨“𝐶”⟩)
1514a1i 11 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (♯‘⟨“𝐴”⟩) = (♯‘⟨“𝐶”⟩))
16 s1len 14578 . . . . . 6 (♯‘⟨“𝐵”⟩) = 1
17 s1len 14578 . . . . . 6 (♯‘⟨“𝐷”⟩) = 1
1816, 17eqtr4i 2756 . . . . 5 (♯‘⟨“𝐵”⟩) = (♯‘⟨“𝐷”⟩)
1918a1i 11 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (♯‘⟨“𝐵”⟩) = (♯‘⟨“𝐷”⟩))
205, 7, 9, 11, 15, 19ofccat 14942 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ((⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) ∘f 𝑅(⟨“𝐶”⟩ ++ ⟨“𝐷”⟩)) = ((⟨“𝐴”⟩ ∘f 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘f 𝑅⟨“𝐷”⟩)))
213, 20eqtrid 2777 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴𝐵”⟩ ∘f 𝑅⟨“𝐶𝐷”⟩) = ((⟨“𝐴”⟩ ∘f 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘f 𝑅⟨“𝐷”⟩)))
22 ofs1 14943 . . . . 5 ((𝐴𝑆𝐶𝑇) → (⟨“𝐴”⟩ ∘f 𝑅⟨“𝐶”⟩) = ⟨“(𝐴𝑅𝐶)”⟩)
234, 8, 22syl2anc 584 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴”⟩ ∘f 𝑅⟨“𝐶”⟩) = ⟨“(𝐴𝑅𝐶)”⟩)
24 ofs1 14943 . . . . 5 ((𝐵𝑆𝐷𝑇) → (⟨“𝐵”⟩ ∘f 𝑅⟨“𝐷”⟩) = ⟨“(𝐵𝑅𝐷)”⟩)
256, 10, 24syl2anc 584 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐵”⟩ ∘f 𝑅⟨“𝐷”⟩) = ⟨“(𝐵𝑅𝐷)”⟩)
2623, 25oveq12d 7408 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ((⟨“𝐴”⟩ ∘f 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘f 𝑅⟨“𝐷”⟩)) = (⟨“(𝐴𝑅𝐶)”⟩ ++ ⟨“(𝐵𝑅𝐷)”⟩))
27 df-s2 14821 . . 3 ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩ = (⟨“(𝐴𝑅𝐶)”⟩ ++ ⟨“(𝐵𝑅𝐷)”⟩)
2826, 27eqtr4di 2783 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ((⟨“𝐴”⟩ ∘f 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘f 𝑅⟨“𝐷”⟩)) = ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩)
2921, 28eqtrd 2765 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴𝐵”⟩ ∘f 𝑅⟨“𝐶𝐷”⟩) = ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  f cof 7654  1c1 11076  chash 14302   ++ cconcat 14542  ⟨“cs1 14567  ⟨“cs2 14814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821
This theorem is referenced by:  amgmw2d  49797
  Copyright terms: Public domain W3C validator