MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustund Structured version   Visualization version   GIF version

Theorem ustund 23317
Description: If two intersecting sets 𝐴 and 𝐵 are both small in 𝑉, their union is small in (𝑉↑2). Proposition 1 of [BourbakiTop1] p. II.12. This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 17-Nov-2017.)
Hypotheses
Ref Expression
ustund.1 (𝜑 → (𝐴 × 𝐴) ⊆ 𝑉)
ustund.2 (𝜑 → (𝐵 × 𝐵) ⊆ 𝑉)
ustund.3 (𝜑 → (𝐴𝐵) ≠ ∅)
Assertion
Ref Expression
ustund (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ (𝑉𝑉))

Proof of Theorem ustund
StepHypRef Expression
1 ustund.3 . . 3 (𝜑 → (𝐴𝐵) ≠ ∅)
2 xpco 6186 . . 3 ((𝐴𝐵) ≠ ∅ → (((𝐴𝐵) × (𝐴𝐵)) ∘ ((𝐴𝐵) × (𝐴𝐵))) = ((𝐴𝐵) × (𝐴𝐵)))
31, 2syl 17 . 2 (𝜑 → (((𝐴𝐵) × (𝐴𝐵)) ∘ ((𝐴𝐵) × (𝐴𝐵))) = ((𝐴𝐵) × (𝐴𝐵)))
4 xpundi 5651 . . . 4 ((𝐴𝐵) × (𝐴𝐵)) = (((𝐴𝐵) × 𝐴) ∪ ((𝐴𝐵) × 𝐵))
5 xpindir 5737 . . . . . 6 ((𝐴𝐵) × 𝐴) = ((𝐴 × 𝐴) ∩ (𝐵 × 𝐴))
6 inss1 4164 . . . . . . 7 ((𝐴 × 𝐴) ∩ (𝐵 × 𝐴)) ⊆ (𝐴 × 𝐴)
7 ustund.1 . . . . . . 7 (𝜑 → (𝐴 × 𝐴) ⊆ 𝑉)
86, 7sstrid 3933 . . . . . 6 (𝜑 → ((𝐴 × 𝐴) ∩ (𝐵 × 𝐴)) ⊆ 𝑉)
95, 8eqsstrid 3970 . . . . 5 (𝜑 → ((𝐴𝐵) × 𝐴) ⊆ 𝑉)
10 xpindir 5737 . . . . . 6 ((𝐴𝐵) × 𝐵) = ((𝐴 × 𝐵) ∩ (𝐵 × 𝐵))
11 inss2 4165 . . . . . . 7 ((𝐴 × 𝐵) ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵)
12 ustund.2 . . . . . . 7 (𝜑 → (𝐵 × 𝐵) ⊆ 𝑉)
1311, 12sstrid 3933 . . . . . 6 (𝜑 → ((𝐴 × 𝐵) ∩ (𝐵 × 𝐵)) ⊆ 𝑉)
1410, 13eqsstrid 3970 . . . . 5 (𝜑 → ((𝐴𝐵) × 𝐵) ⊆ 𝑉)
159, 14unssd 4121 . . . 4 (𝜑 → (((𝐴𝐵) × 𝐴) ∪ ((𝐴𝐵) × 𝐵)) ⊆ 𝑉)
164, 15eqsstrid 3970 . . 3 (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ 𝑉)
17 xpundir 5652 . . . 4 ((𝐴𝐵) × (𝐴𝐵)) = ((𝐴 × (𝐴𝐵)) ∪ (𝐵 × (𝐴𝐵)))
18 xpindi 5736 . . . . . 6 (𝐴 × (𝐴𝐵)) = ((𝐴 × 𝐴) ∩ (𝐴 × 𝐵))
19 inss1 4164 . . . . . . 7 ((𝐴 × 𝐴) ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐴)
2019, 7sstrid 3933 . . . . . 6 (𝜑 → ((𝐴 × 𝐴) ∩ (𝐴 × 𝐵)) ⊆ 𝑉)
2118, 20eqsstrid 3970 . . . . 5 (𝜑 → (𝐴 × (𝐴𝐵)) ⊆ 𝑉)
22 xpindi 5736 . . . . . 6 (𝐵 × (𝐴𝐵)) = ((𝐵 × 𝐴) ∩ (𝐵 × 𝐵))
23 inss2 4165 . . . . . . 7 ((𝐵 × 𝐴) ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵)
2423, 12sstrid 3933 . . . . . 6 (𝜑 → ((𝐵 × 𝐴) ∩ (𝐵 × 𝐵)) ⊆ 𝑉)
2522, 24eqsstrid 3970 . . . . 5 (𝜑 → (𝐵 × (𝐴𝐵)) ⊆ 𝑉)
2621, 25unssd 4121 . . . 4 (𝜑 → ((𝐴 × (𝐴𝐵)) ∪ (𝐵 × (𝐴𝐵))) ⊆ 𝑉)
2717, 26eqsstrid 3970 . . 3 (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ 𝑉)
2816, 27coss12d 14627 . 2 (𝜑 → (((𝐴𝐵) × (𝐴𝐵)) ∘ ((𝐴𝐵) × (𝐴𝐵))) ⊆ (𝑉𝑉))
293, 28eqsstrrd 3961 1 (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ (𝑉𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2941  cun 3886  cin 3887  wss 3888  c0 4258   × cxp 5583  ccom 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2708  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3429  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-sn 4564  df-pr 4566  df-op 4570  df-br 5076  df-opab 5138  df-xp 5591  df-rel 5592  df-co 5594
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator