MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustund Structured version   Visualization version   GIF version

Theorem ustund 24246
Description: If two intersecting sets 𝐴 and 𝐵 are both small in 𝑉, their union is small in (𝑉↑2). Proposition 1 of [BourbakiTop1] p. II.12. This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 17-Nov-2017.)
Hypotheses
Ref Expression
ustund.1 (𝜑 → (𝐴 × 𝐴) ⊆ 𝑉)
ustund.2 (𝜑 → (𝐵 × 𝐵) ⊆ 𝑉)
ustund.3 (𝜑 → (𝐴𝐵) ≠ ∅)
Assertion
Ref Expression
ustund (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ (𝑉𝑉))

Proof of Theorem ustund
StepHypRef Expression
1 ustund.3 . . 3 (𝜑 → (𝐴𝐵) ≠ ∅)
2 xpco 6311 . . 3 ((𝐴𝐵) ≠ ∅ → (((𝐴𝐵) × (𝐴𝐵)) ∘ ((𝐴𝐵) × (𝐴𝐵))) = ((𝐴𝐵) × (𝐴𝐵)))
31, 2syl 17 . 2 (𝜑 → (((𝐴𝐵) × (𝐴𝐵)) ∘ ((𝐴𝐵) × (𝐴𝐵))) = ((𝐴𝐵) × (𝐴𝐵)))
4 xpundi 5757 . . . 4 ((𝐴𝐵) × (𝐴𝐵)) = (((𝐴𝐵) × 𝐴) ∪ ((𝐴𝐵) × 𝐵))
5 xpindir 5848 . . . . . 6 ((𝐴𝐵) × 𝐴) = ((𝐴 × 𝐴) ∩ (𝐵 × 𝐴))
6 inss1 4245 . . . . . . 7 ((𝐴 × 𝐴) ∩ (𝐵 × 𝐴)) ⊆ (𝐴 × 𝐴)
7 ustund.1 . . . . . . 7 (𝜑 → (𝐴 × 𝐴) ⊆ 𝑉)
86, 7sstrid 4007 . . . . . 6 (𝜑 → ((𝐴 × 𝐴) ∩ (𝐵 × 𝐴)) ⊆ 𝑉)
95, 8eqsstrid 4044 . . . . 5 (𝜑 → ((𝐴𝐵) × 𝐴) ⊆ 𝑉)
10 xpindir 5848 . . . . . 6 ((𝐴𝐵) × 𝐵) = ((𝐴 × 𝐵) ∩ (𝐵 × 𝐵))
11 inss2 4246 . . . . . . 7 ((𝐴 × 𝐵) ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵)
12 ustund.2 . . . . . . 7 (𝜑 → (𝐵 × 𝐵) ⊆ 𝑉)
1311, 12sstrid 4007 . . . . . 6 (𝜑 → ((𝐴 × 𝐵) ∩ (𝐵 × 𝐵)) ⊆ 𝑉)
1410, 13eqsstrid 4044 . . . . 5 (𝜑 → ((𝐴𝐵) × 𝐵) ⊆ 𝑉)
159, 14unssd 4202 . . . 4 (𝜑 → (((𝐴𝐵) × 𝐴) ∪ ((𝐴𝐵) × 𝐵)) ⊆ 𝑉)
164, 15eqsstrid 4044 . . 3 (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ 𝑉)
17 xpundir 5758 . . . 4 ((𝐴𝐵) × (𝐴𝐵)) = ((𝐴 × (𝐴𝐵)) ∪ (𝐵 × (𝐴𝐵)))
18 xpindi 5847 . . . . . 6 (𝐴 × (𝐴𝐵)) = ((𝐴 × 𝐴) ∩ (𝐴 × 𝐵))
19 inss1 4245 . . . . . . 7 ((𝐴 × 𝐴) ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐴)
2019, 7sstrid 4007 . . . . . 6 (𝜑 → ((𝐴 × 𝐴) ∩ (𝐴 × 𝐵)) ⊆ 𝑉)
2118, 20eqsstrid 4044 . . . . 5 (𝜑 → (𝐴 × (𝐴𝐵)) ⊆ 𝑉)
22 xpindi 5847 . . . . . 6 (𝐵 × (𝐴𝐵)) = ((𝐵 × 𝐴) ∩ (𝐵 × 𝐵))
23 inss2 4246 . . . . . . 7 ((𝐵 × 𝐴) ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵)
2423, 12sstrid 4007 . . . . . 6 (𝜑 → ((𝐵 × 𝐴) ∩ (𝐵 × 𝐵)) ⊆ 𝑉)
2522, 24eqsstrid 4044 . . . . 5 (𝜑 → (𝐵 × (𝐴𝐵)) ⊆ 𝑉)
2621, 25unssd 4202 . . . 4 (𝜑 → ((𝐴 × (𝐴𝐵)) ∪ (𝐵 × (𝐴𝐵))) ⊆ 𝑉)
2717, 26eqsstrid 4044 . . 3 (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ 𝑉)
2816, 27coss12d 15008 . 2 (𝜑 → (((𝐴𝐵) × (𝐴𝐵)) ∘ ((𝐴𝐵) × (𝐴𝐵))) ⊆ (𝑉𝑉))
293, 28eqsstrrd 4035 1 (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ (𝑉𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wne 2938  cun 3961  cin 3962  wss 3963  c0 4339   × cxp 5687  ccom 5693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-co 5698
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator