MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustund Structured version   Visualization version   GIF version

Theorem ustund 22827
Description: If two intersecting sets 𝐴 and 𝐵 are both small in 𝑉, their union is small in (𝑉↑2). Proposition 1 of [BourbakiTop1] p. II.12. This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 17-Nov-2017.)
Hypotheses
Ref Expression
ustund.1 (𝜑 → (𝐴 × 𝐴) ⊆ 𝑉)
ustund.2 (𝜑 → (𝐵 × 𝐵) ⊆ 𝑉)
ustund.3 (𝜑 → (𝐴𝐵) ≠ ∅)
Assertion
Ref Expression
ustund (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ (𝑉𝑉))

Proof of Theorem ustund
StepHypRef Expression
1 ustund.3 . . 3 (𝜑 → (𝐴𝐵) ≠ ∅)
2 xpco 6108 . . 3 ((𝐴𝐵) ≠ ∅ → (((𝐴𝐵) × (𝐴𝐵)) ∘ ((𝐴𝐵) × (𝐴𝐵))) = ((𝐴𝐵) × (𝐴𝐵)))
31, 2syl 17 . 2 (𝜑 → (((𝐴𝐵) × (𝐴𝐵)) ∘ ((𝐴𝐵) × (𝐴𝐵))) = ((𝐴𝐵) × (𝐴𝐵)))
4 xpundi 5584 . . . 4 ((𝐴𝐵) × (𝐴𝐵)) = (((𝐴𝐵) × 𝐴) ∪ ((𝐴𝐵) × 𝐵))
5 xpindir 5669 . . . . . 6 ((𝐴𝐵) × 𝐴) = ((𝐴 × 𝐴) ∩ (𝐵 × 𝐴))
6 inss1 4155 . . . . . . 7 ((𝐴 × 𝐴) ∩ (𝐵 × 𝐴)) ⊆ (𝐴 × 𝐴)
7 ustund.1 . . . . . . 7 (𝜑 → (𝐴 × 𝐴) ⊆ 𝑉)
86, 7sstrid 3926 . . . . . 6 (𝜑 → ((𝐴 × 𝐴) ∩ (𝐵 × 𝐴)) ⊆ 𝑉)
95, 8eqsstrid 3963 . . . . 5 (𝜑 → ((𝐴𝐵) × 𝐴) ⊆ 𝑉)
10 xpindir 5669 . . . . . 6 ((𝐴𝐵) × 𝐵) = ((𝐴 × 𝐵) ∩ (𝐵 × 𝐵))
11 inss2 4156 . . . . . . 7 ((𝐴 × 𝐵) ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵)
12 ustund.2 . . . . . . 7 (𝜑 → (𝐵 × 𝐵) ⊆ 𝑉)
1311, 12sstrid 3926 . . . . . 6 (𝜑 → ((𝐴 × 𝐵) ∩ (𝐵 × 𝐵)) ⊆ 𝑉)
1410, 13eqsstrid 3963 . . . . 5 (𝜑 → ((𝐴𝐵) × 𝐵) ⊆ 𝑉)
159, 14unssd 4113 . . . 4 (𝜑 → (((𝐴𝐵) × 𝐴) ∪ ((𝐴𝐵) × 𝐵)) ⊆ 𝑉)
164, 15eqsstrid 3963 . . 3 (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ 𝑉)
17 xpundir 5585 . . . 4 ((𝐴𝐵) × (𝐴𝐵)) = ((𝐴 × (𝐴𝐵)) ∪ (𝐵 × (𝐴𝐵)))
18 xpindi 5668 . . . . . 6 (𝐴 × (𝐴𝐵)) = ((𝐴 × 𝐴) ∩ (𝐴 × 𝐵))
19 inss1 4155 . . . . . . 7 ((𝐴 × 𝐴) ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐴)
2019, 7sstrid 3926 . . . . . 6 (𝜑 → ((𝐴 × 𝐴) ∩ (𝐴 × 𝐵)) ⊆ 𝑉)
2118, 20eqsstrid 3963 . . . . 5 (𝜑 → (𝐴 × (𝐴𝐵)) ⊆ 𝑉)
22 xpindi 5668 . . . . . 6 (𝐵 × (𝐴𝐵)) = ((𝐵 × 𝐴) ∩ (𝐵 × 𝐵))
23 inss2 4156 . . . . . . 7 ((𝐵 × 𝐴) ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵)
2423, 12sstrid 3926 . . . . . 6 (𝜑 → ((𝐵 × 𝐴) ∩ (𝐵 × 𝐵)) ⊆ 𝑉)
2522, 24eqsstrid 3963 . . . . 5 (𝜑 → (𝐵 × (𝐴𝐵)) ⊆ 𝑉)
2621, 25unssd 4113 . . . 4 (𝜑 → ((𝐴 × (𝐴𝐵)) ∪ (𝐵 × (𝐴𝐵))) ⊆ 𝑉)
2717, 26eqsstrid 3963 . . 3 (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ 𝑉)
2816, 27coss12d 14323 . 2 (𝜑 → (((𝐴𝐵) × (𝐴𝐵)) ∘ ((𝐴𝐵) × (𝐴𝐵))) ⊆ (𝑉𝑉))
293, 28eqsstrrd 3954 1 (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ (𝑉𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wne 2987  cun 3879  cin 3880  wss 3881  c0 4243   × cxp 5517  ccom 5523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-xp 5525  df-rel 5526  df-co 5528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator